
python-twitter Documentation
Release 3.4.2

python-twitter@googlegroups.com

Sep 29, 2018

Contents

1 Installation & Testing 3

2 Getting Started 5

3 Contributing 11

4 Migration from v2 to v3 13

5 Changelog 19

6 Rate Limiting 23

7 Models 25

8 Searching 27

9 Using with Django 29

10 Modules Documentation 31

11 Introduction 67

12 Indices and tables 69

Python Module Index 71

i

ii

python-twitter Documentation, Release 3.4.2

A Python wrapper around the Twitter API.

Author: The Python-Twitter Developers <python-twitter@googlegroups.com>

Contents:

Contents 1

mailto:python-twitter@googlegroups.com

python-twitter Documentation, Release 3.4.2

2 Contents

CHAPTER 1

Installation & Testing

1.1 Installation

From PyPI

$ pip install python-twitter

From source

Install the dependencies:

• Requests

• Requests OAuthlib

Alternatively use pip:

$ pip install -r requirements.txt

Download the latest python-twitter library from: https://github.com/bear/python-twitter/

Extract the source distribution and run:

$ python setup.py build
$ python setup.py install

1.2 Testing

The following requires pip install pytest and pip install pytest-cov. Run:

$ make test

If you would like to see coverage information:

3

http://docs.python-requests.org/en/latest/
https://requests-oauthlib.readthedocs.io/en/latest/
https://github.com/bear/python-twitter/

python-twitter Documentation, Release 3.4.2

$ make coverage

1.3 Getting the code

The code is hosted at Github.

Check out the latest development version anonymously with:

$ git clone git://github.com/bear/python-twitter.git
$ cd python-twitter

4 Chapter 1. Installation & Testing

https://github.com/bear/python-twitter

CHAPTER 2

Getting Started

2.1 Getting your application tokens

This section is subject to changes made by Twitter and may not always be completely up-to-date. If you see something
change on their end, please create a new issue on Github or submit a pull request to update it.

In order to use the python-twitter API client, you first need to acquire a set of application tokens. These will be your
consumer_key and consumer_secret, which get passed to twitter.Api() when starting your application.

2.1.1 Create your app

The first step in doing so is to create a Twitter App. Click the “Create New App” button and fill out the fields on the
next page.

5

https://github.com/bear/python-twitter/issues/new
https://apps.twitter.com/

python-twitter Documentation, Release 3.4.2

If there are any problems with the information on that page, Twitter will complain and you can fix it. (Make sure to
get the name correct - it is unclear if you can change this later.) On the next screen, you’ll see the application that you
created and some information about it:

2.1.2 Your app

Once your app is created, you’ll be directed to a new page showing you some information about it.

6 Chapter 2. Getting Started

python-twitter Documentation, Release 3.4.2

2.1.3 Your Keys

Click on the “Keys and Access Tokens” tab on the top there, just under the green notification in the image above.

2.1. Getting your application tokens 7

python-twitter Documentation, Release 3.4.2

At this point, you can test out your application using the keys under “Your Application Tokens”. The twitter.
Api() object can be created as follows:

import twitter
api = twitter.Api(consumer_key=[consumer key],

consumer_secret=[consumer secret],
access_token_key=[access token],
access_token_secret=[access token secret])

Note: Make sure to enclose your keys in quotes (ie, api = twitter.Api(consumer_key=‘1234567’, . . .) and so on) or
you will receive a NameError.

If you are creating an application for end users/consumers, then you will want them to authorize you application, but

8 Chapter 2. Getting Started

python-twitter Documentation, Release 3.4.2

that is outside the scope of this document.

And that should be it! If you need a little more help, check out the examples on Github. If you have an open source
application using python-twitter, send us a link and we’ll add a link to it here.

2.1. Getting your application tokens 9

https://github.com/bear/python-twitter/tree/master/examples

python-twitter Documentation, Release 3.4.2

10 Chapter 2. Getting Started

CHAPTER 3

Contributing

3.1 Getting the code

The code is hosted at Github.

Check out the latest development version anonymously with:

$ git clone git://github.com/bear/python-twitter.git
$ cd python-twitter

The following sections assuming that you have pyenv installed and working on your computer.

To install dependencies, run:

$ make dev

This will install all of the required packages for the core library, testing, and installation.

3.2 Testing

Once you have your development environment set up, you can run:

$ make test

to ensure that all tests are currently passing before starting work. You can also check test coverage by running:

$ make coverage

Pull requests are welcome or, if you are having trouble, please open an issue on GitHub.

11

https://github.com/bear/python-twitter
https://github.com/yyuu/pyenv

python-twitter Documentation, Release 3.4.2

12 Chapter 3. Contributing

CHAPTER 4

Migration from v2 to v3

4.1 Changes to Existing Methods

4.1.1 twitter.api.Api()

• shortner parameter has been removed. Please see Issue #298.

4.1.2 twitter.api.Api.CreateFavorite()

• kwarg param has been changed to status_id from id to be consistent with other method calls and avoid
shadowing builtin function id.

4.1.3 twitter.api.Api.DestroyFavorite()

• kwarg param has been changed to status_id from id to be consistent with other method calls and avoid
shadowing builtin function id.

4.1.4 twitter.api.Api.DestroyBlock()

• Kwarg id has been changed to user_id in order to avoid shadowing a builtin and be more descriptive.

4.1.5 twitter.api.Api.DestroyStatus()

• kwarg id has been changed to status_id in keeping with the rest of the Api and to avoid shadowing a builtin.

13

https://github.com/bear/python-twitter/issues/298

python-twitter Documentation, Release 3.4.2

4.1.6 twitter.api.Api.GetBlocks()

• Method no longer accepts parameters user_id or screen_name as these are not honored by Twitter. The
data returned will be for the authenticated user only.

• Parameter cursor is no longer accepted – this method will return all users being blocked by the currently
authenticated user. If you need paging, please use twitter.api.Api.GetBlocksPaged() instead.

4.1.7 twitter.api.Api.GetFollowers()

• Method no longer honors a count or cursor parameter. These have been deprecated in favor of making
this method explicitly a convenience function to return a list of every twitter.User who is following the
specified or authenticated user. A warning will be raised if count or cursor is passed with the expectation
that breaking behavior will be introduced in a later version.

• Method now takes an optional parameter of total_count, which limits the number of users to return. If this
is not set, the data returned will be all users following the specified user.

• The kwarg include_user_entities now defaults to True. This was set to False previously, but would
not be included in query parameters sent to Twitter. Without the query parameter in the URL, Twitter would
default to returning user_entities, so this change makes this behavior explicit.

4.1.8 twitter.api.Api.GetFollowersPaged()

• The third value of the tuple returned by this method is now a list of twitter.User objects in accordance with its
doc string rather than the raw data from API.

• The kwarg include_user_entities now defaults to True. This was set to False previously, but would
not be included in query parameters sent to Twitter. Without the query parameter in the URL, Twitter would
default to returning user_entities, so this change makes this behavior explicit and consistent with the previously
ambiguous behavior.

4.1.9 twitter.api.Api.GetFriends()

• Method no longer honors a count or cursor parameter. These have been deprecated in favor of making
this method explicitly a convenience function to return a list of every twitter.User who is followed by the
specified or authenticated user. A warning will be raised if count or cursor is passed with the expectation
that breaking behavior will be introduced in a later version.

• Method now takes an optional parameter of total_count, which limits the number of users to return. If this
is not set, the data returned will be all users followed by the specified user.

• The kwarg include_user_entities now defaults to True. This was set to False previously, but would
not be included in query parameters sent to Twitter. Without the query parameter in the URL, Twitter would
default to returning user_entities, so this change makes this behavior explicit.

4.1.10 twitter.api.Api.GetFriendsPaged()

• The third value of the tuple returned by this method is now a list of twitter.User objects in accordance with its
doc string rather than the raw data from API.

• The kwarg include_user_entities now defaults to True. This was set to False previously, but would
not be included in query parameters sent to Twitter. Without the query parameter in the URL, Twitter would
default to returning user_entities, so this change makes this behavior explicit.

14 Chapter 4. Migration from v2 to v3

python-twitter Documentation, Release 3.4.2

4.1.11 twitter.api.Api.GetListMembers()

• No longer accepts cursor parameter. If you require granular control over the paging of the twitter.list.List
members, please user twitter.api.Api.GetListMembersPaged instead.

4.1.12 twitter.api.Api.GetStatus()

• Kwarg id has been changed to status_id in keeping with the rest of the Api and to avoid shadowing a
builtin.

4.1.13 twitter.api.Api.GetStatusOembed()

• Kwarg id has been changed to status_id in keeping with the rest of the Api and to avoid shadowing a
builtin.

4.1.14 twitter.api.Api.GetSearch()

• Adds raw_query method. See Raw Queries for more information.

4.1.15 twitter.api.Api.GetTrendsWoeid()

• Kwarg id has been changed to woeid in order to avoid shadowing a builtin and be more descriptive.

4.1.16 twitter.api.Api.GetUserStream()

• Parameter ‘stall_warning’ is now ‘stall_warnings’ in line with GetStreamFilter and Twitter’s naming convention.
This should now actually return stall warnings, whereas it did not have any effect previously.

4.1.17 twitter.api.Api.LookupFriendship()

• Method will now accept a list for either user_id or screen_name. The list can contain either ints, strings,
or twitter.user.User objects for either user_id or screen_name.

• Return value is a list of twitter.user.UserStatus objects.

4.1.18 twitter.api.Api.PostUpdate()

• Now accepts three new parameters: media, media_additional_owners, and media_category.
media can be a URL, a local file, or a file-like object (something with a read() method), or a list of any
combination of the above.

• media_additional_owners should be a list of user ids representing Twitter users that should be able to
use the uploaded media in their tweets. If you pass a list of media, then additional owners will apply to each
object. If you need more granular control, please use the UploadMedia* methods.

• media_category: Only for use with the AdsAPI. See https://dev.twitter.com/ads/creative/
promoted-video-overview if this applies to your application.

4.1. Changes to Existing Methods 15

https://dev.twitter.com/ads/creative/promoted-video-overview
https://dev.twitter.com/ads/creative/promoted-video-overview

python-twitter Documentation, Release 3.4.2

4.1.19 twitter.api.Api.PostRetweet()

• Kwarg original_id has been changed to status_id in order to avoid shadowing a builtin and be more
descriptive.

4.2 Deprecation

4.2.1 twitter.api.Api.PostMedia()

• This endpoint is deprecated by Twitter. Python-twitter will throw a warning about using the method and advise
you to use PostUpdate() instead. There is no schedule for when this will be removed from Twitter.

4.2.2 twitter.api.Api.PostMultipleMedia()

• This method should be replaced by passing a list of media objects (either URLs, local files, or file-like objects)
to PostUpdate. You are limited to a maximum of 4 media files per tweet.

4.3 New Methods

4.3.1 twitter.api.Api.GetBlocksIDs()

• Returns all the users currently blocked by the authenticated user as user IDs. The user IDs will be integers.

4.3.2 twitter.api.Api.GetBlocksIDsPaged()

• Returns one page, specified by the cursor parameter, of the users currently blocked by the authenticated user as
user IDs.

4.3.3 twitter.api.Api.GetBlocksPaged()

• Allows you to page through the currently authenticated user’s blocked users. Method returns three values: the
next cursor, the previous cursor, and a list of twitter.User instances representing the blocked users.

4.3.4 twitter.api.Api.GetListMembersPaged()

• Allows you to page through a the members of a given twitter.list.List.

• cursor parameter operates as with other methods, denoting the page of members that you wish to retrieve.

• Returns next_cursor, previous_cursor, and a list containing the users that are members of the given
twitter.list.List.

16 Chapter 4. Migration from v2 to v3

python-twitter Documentation, Release 3.4.2

4.3.5 twitter.api.Api.GetListsPaged()

• Much like twitter.api.Api.GetFriendsPaged() and similar methods, this allows you to retrieve
an arbitrary page of twitter.list.List for either the currently authenticated user or a user specified by
user_id or screen_name.

• cursor should be -1 for the first page.

• Returns the next_cursor, previous_cursor, and a list of twitter.list.List instances.

4.3.6 twitter.api.Api.UploadMediaChunked()

• API method allows chunked upload to upload.twitter.com. Similar to Api.PostMedia(), this method can take
either a local filename (str), a URL (str), or a file-like object. The image or video type will be determined by
mimetypes (see twitter.twitter_utils.parse_media_file() for details).

• Optionally, you can specify a chunk_size for uploads when instantiating the Api object. This should be given in
bytes. The default is 1MB (that is, 1048576 bytes). Any chunk_size given below 16KB will result in a warning:
Twitter will return an error if you try to upload more than 999 chunks of data; for example, if you are uploading
a 15MB video, then a chunk_size lower than 15729 bytes will result in 1000 APPEND commands being sent to
the API, so you’ll get an error. 16KB seems like a reasonable lower bound, but if your use case is well-defined,
then python-twitter will not enforce this behavior.

• Another thing to take into consideration: if you’re working in a RAM-constrained environment, a very large
chunk_size will increase your RAM usage when uploading media through this endpoint.

• The return value will be the media_id of the uploaded file.

4.3.7 twitter.api.Api.UploadMediaSimple()

• Provides the ability to upload a single media file to Twitter without using the ChunkedUpload endpoint. This
method should be used on smaller files and reduces the roundtrips from Twitter from three (for UploadMedi-
aChunked) to one.

• Return value is the media_id of the uploaded file.

4.3. New Methods 17

python-twitter Documentation, Release 3.4.2

18 Chapter 4. Migration from v2 to v3

CHAPTER 5

Changelog

5.1 Version 3.4.2

Bugfixes:

• Allow upload of GIFs with size up to 15mb. See #538

5.2 Version 3.4.1

Bugfixes:

• Fix an issue where twitter.twitter_utils.calc_expected_status_length() was failing for
python 2 due to a failure to convert a bytes string to unicode. Github issue #546.

• Documentation fix for twitter.api.Api.UsersLookup(). UsersLookup can take a string or a list and
properly parses both of them now. Github issues #535 and #549.

• Properly decode response content for twitter.twitter_utils.http_to_file(). Github issue #521.

• Fix an issue with loading extended_tweet entities from Streaming API where tweets would be truncated when
converting to a twitter.models.Status. Github issues #491 and #506.

5.3 Version 3.4

5.3.1 Deprecations

• twitter.api.Api.UpdateBackgroundImage(). Please make sure that your code does not call this
function as it will now return a hard error. There is no replacement function. This was deprecated by Twitter
around July 2015.

• twitter.api.Api.PostMedia() has been removed. Please use twitter.api.Api.
PostUpdate() instead.

19

https://github.com/bear/python-twitter/pull/538
https://github.com/bear/python-twitter/issues/546
https://github.com/bear/python-twitter/issues/535
https://github.com/bear/python-twitter/issues/549
https://github.com/bear/python-twitter/issues/521
https://github.com/bear/python-twitter/issues/491
https://github.com/bear/python-twitter/issues/506

python-twitter Documentation, Release 3.4.2

• twitter.api.Api.PostMultipleMedia(). Please use twitter.api.Api.PostUpdate() in-
stead.

5.4 Version 3.3.1

• Adds support for 280 character limit.

5.5 Version 3.3

• Adds application only authentication. See Twitter’s documentation for details. To use application only authen-
tication, pass application_only_auth when creating the Api; the bearer token will be automatically retrieved.

• Adds function twitter.api.GetAppOnlyAuthToken()

• Adds filter_level keyword argument for twitter.api.GetStreamFilter(), twitter.api.
GetUserStream()

• Adds proxies keyword argument for creating an Api instance. Pass a dictionary of proxies for the request to pass
through, if not specified allows requests lib to use environmental variables for proxy if any.

• Adds support for quoted_status to the twitter.models.Status model.

5.6 Version 3.2.1

• twitter.twitter_utils.calc_expected_status_length() should now function properly.
Previously, URLs would be counted incorrectly. See PR #416

• twitter.api.Api.PostUpdates() now passes any keyword arguments on the edge case that only one
tweet was actually being posted.

5.7 Version 3.2

5.7.1 Deprecations

Nothing is being deprecationed this version, however here’s what’s being deprecated as of v. 3.3.0:

• twitter.api.Api.UpdateBackgroundImage(). Please make sure that your code does not call this
function as it will be returning a hard error. There is no replace function. This was deprecated by Twitter around
July 2015.

• twitter.api.Api.PostMedia() will be removed. Please use twitter.api.Api.PostUpdate()
instead.

• twitter.api.Api.PostMultipleMedia(). Please use twitter.api.Api.PostUpdate() in-
stead.

• twitter.api.GetFriends() will no longer accept a cursor or count parameter. Please use twitter.
api.GetFriendsPaged() instead.

• twitter.api.GetFollowers() will no longer accept a cursor or count parameter. Please use
twitter.api.GetFollowersPaged() instead.

20 Chapter 5. Changelog

https://dev.twitter.com/oauth/application-only
https://github.com/bear/python-twitter/pull/416

python-twitter Documentation, Release 3.4.2

5.7.2 What’s New

• We’ve added new deprecation warnings, so it’s easier to track when things go away.
All of python-twitter’s deprecation warnings will be a subclass of twitter.error.
PythonTwitterDeprecationWarning and will have a version number associated with them such
as twitter.error.PythonTwitterDeprecationWarning330.

• twitter.models.User now contains a following attribute, which describes whether the authenticated
user is following the User. PR #351

• twitter.models.DirectMessage contains a full twitter.models.User object for both the
DirectMessage.sender and DirectMessage.recipient properties. PR #384.

• You can now upload Quicktime movies (*.mov). PR #372.

• If you have a whitelisted app, you can now get the authenticated user’s email address through a call to
twitter.api.Api.VerifyCredentials(). If your app isn’t whitelisted, no error is returned. PR
#376.

• Google App Engine support has been reintegrated into the library. Check out PR #383.

• video_info is now available on a twitter.models.Media object, which allows access to video urls/bitrates/etc. in
the extended_entities node of a tweet.

5.7.3 What’s Changed

• twitter.models.Trend’s volume attribute has been renamed tweet_volume in line with Twitter’s naming
convention. This change should allow users to access the number of tweets being tweeted for a given Trend. PR
#375

• twitter.ratelimit.RateLimit should behave better now and adds a 1-second padding to requests after
sleeping.

• twitter.ratelimit.RateLimit now keeps track of your rate limit status even if you don’t have
sleep_on_rate_limit set to True when instatiating the API. If you want to add different behavior on
hitting a rate limit, you should be able to now by querying the rate limit object. See PR #370 for the technical
details of the change. There should be no difference in behavior for the defaults, but let us know.

5.7.4 Bugfixes

• twitter.models.Media again contains a sizes attribute, which was missed back in the Version 3.0
release. PR #360

• The previously bloated twitter.api.Api.UploadMediaChunked() function has been broken out into
three related functions and fixes two an incompatibility with python 2.7. Behavior remains the same, but this
should simplify matters. PR #347

• Fix for twitter.api.Api.PostUpdate() where a passing an integer to the media parameter would
cause an iteration error to occur. PR #347

• Fix for 401 errors that were occuring in the Streaming Endpoints. PR #364

5.7. Version 3.2 21

https://github.com/bear/python-twitter/pull/351
https://github.com/bear/python-twitter/pull/384
https://github.com/bear/python-twitter/pull/372
https://github.com/bear/python-twitter/pull/376
https://github.com/bear/python-twitter/pull/376
https://github.com/bear/python-twitter/pull/383
https://github.com/bear/python-twitter/pull/375
https://github.com/bear/python-twitter/pull/375
https://github.com/bear/python-twitter/pull/370
https://github.com/bear/python-twitter/pull/360
https://github.com/bear/python-twitter/pull/347
https://github.com/bear/python-twitter/pull/347
https://github.com/bear/python-twitter/pull/364

python-twitter Documentation, Release 3.4.2

5.8 Version 3.1

5.8.1 What’s New

• twitter.api.Api.PostMediaMetadata()Method allows the posting of alt text (hover text) to a photo
on Twitter. Note that it appears that you have to call this method prior to attaching the photo to a status.

• A couple new methods have been added related to showing the connections between two users:

– twitter.api.Api.ShowFriendship() shows the connection between two users (i.e., are they
following each other?)

– twitter.api.Api.IncomingFriendship() shows all of the authenticated user’s pending fol-
lower requests (if the user has set their account to private).

– twitter.api.Api.OutgoingFriendship() shows the authenticated user’s request to follow
other users (i.e. the user has attempted to follow a private account).

• Several methods were added related to muting users:

– twitter.api.Api.GetMutes() returns all users the currently authenticated user is muting (as
twitter.models.User objects).

– twitter.api.Api.GetMutesPaged() returns a page of twitter.models.User objects.

– twitter.api.Api.GetMutesIDs() returns all of the users the currently authenticated user is mut-
ing as integers.

– twitter.api.Api.GetMutesIDsPaged() returns a single page of the users the currently authen-
ticated user is muting as integers.

5.8.2 What’s Changed

• twitter.api.Api.GetStatus() Now accepts the keyword argument include_ext_alt_text
which will request alt text to be included with the Status object being returned (if available). Defaults to True.

• [model].__repr__() functions have been revised for better Unicode compatibility. If you notice any
weirdness, please let us know.

• twitter.api.Api() no longer accepts the shortner parameter; however, see examples/
shorten_url.py for an example of how to use a URL shortener with the API.

• twitter.api.Api._Encode() and twitter.api.Api._EncodePostData() have both been
refactored out of the API.

• twitter.models.Media now has an attribute ext_alt_text for alt (hover) text for images posted to
Twitter.

• twitter.models.Status no longer has the properties relative_created_at, now, or Now. If you
require a relative time, we suggest using a third-party library.

• Updated examples, specifically examples/twitter-to-xhtml.py, examples/view_friends.py,
examples/shorten_url.py

• Updated get_access_token.py script to be python3 compatible.

• twitter.api.Api.GetStreamFilter() now accepts an optional languages parameter as a list.

22 Chapter 5. Changelog

CHAPTER 6

Rate Limiting

6.1 Overview

Twitter imposes rate limiting based either on user tokens or application tokens. Please see: API Rate Limits for a more
detailed explanation of Twitter’s policies. What follows will be a summary of how Python-Twitter attempts to deal
with rate limits and how you should expect those limits to be respected (or not).

Python-Twitter tries to abstract away the details of Twitter’s rate limiting by allowing you to globally respect those
limits or ignore them. If you wish to have the application sleep when it hits a rate limit, you should instantiate the API
with sleep_on_rate_limit=True like so:

import twitter
api = twitter.Api(consumer_key=[consumer key],

consumer_secret=[consumer secret],
access_token_key=[access token],
access_token_secret=[access token secret],
sleep_on_rate_limit=True)

By default, python-twitter will raise a hard error for rate limits

Effectively, when the API determines that the next call to an endpoint will result in a rate limit error being thrown by
Twitter, it will sleep until you are able to safely make that call. For most API methods, the headers in the response
from Twitter will contain the following information:

x-rate-limit-limit: The number of times you can request the given endpoint within a certain
number of minutes (otherwise known as a window).

x-rate-limit-remaining: The number of times you have left for a given endpoint within a win-
dow.

x-rate-limit-reset: The number of seconds left until the window resets.

For most endpoints, this is 15 requests per 15 minutes. So if you have set the global sleep_on_rate_limit to
True, the process looks something like this:

23

https://dev.twitter.com/rest/public/rate-limiting

python-twitter Documentation, Release 3.4.2

api.GetListMembersPaged()
GET /list/{id}/members.json?cursor=-1
GET /list/{id}/members.json?cursor=2
GET /list/{id}/members.json?cursor=3
GET /list/{id}/members.json?cursor=4
GET /list/{id}/members.json?cursor=5
GET /list/{id}/members.json?cursor=6
GET /list/{id}/members.json?cursor=7
GET /list/{id}/members.json?cursor=8
GET /list/{id}/members.json?cursor=9
GET /list/{id}/members.json?cursor=10
GET /list/{id}/members.json?cursor=11
GET /list/{id}/members.json?cursor=12
GET /list/{id}/members.json?cursor=13
GET /list/{id}/members.json?cursor=14

This last GET request returns a response where x-rate-limit-remaining
is equal to 0, so the API sleeps for 15 minutes

GET /list/{id}/members.json?cursor=15

... etc ...

If you would rather not have your API instance sleep when hitting, then do not pass
sleep_on_rate_limit=True to your API instance. This will cause the API to raise a hard error when
attempting to make call #15 above.

6.2 Technical

The twitter/ratelimit.py file contains the code that handles storing and checking rate limits for end-
points. Since Twitter does not send any information regarding the endpoint that you are requesting with the
x-rate-limit-* headers, the endpoint is determined by some regex using the URL.

The twitter.Api instance contains an Api.rate_limit object that you can inspect to see the current limits for any
URL and exposes a number of methods for querying and setting rate limits on a per-resource (i.e., endpoint) basis.
See twitter.ratelimit.RateLimit() for more information.

24 Chapter 6. Rate Limiting

CHAPTER 7

Models

Python-twitter provides the following models of the objects returned by the Twitter API:

• twitter.models.Category

• twitter.models.DirectMessage

• twitter.models.Hashtag

• twitter.models.List

• twitter.models.Media

• twitter.models.Status

• twitter.models.Trend

• twitter.models.Url

• twitter.models.User

• twitter.models.UserStatus

25

python-twitter Documentation, Release 3.4.2

26 Chapter 7. Models

CHAPTER 8

Searching

8.1 Raw Queries

To the Api.GetSearch() method, you can pass the parameter raw_query, which should be the query string
you wish to use for the search omitting the leading “?”. This will override every other parameter. Twitter’s search
parameters are quite complex, so if you have a need for a very particular search, you can find Twitter’s documentation
at https://dev.twitter.com/rest/public/search.

For example, if you want to search for only tweets containing the word “twitter”, then you could do the following:

results = api.GetSearch(
raw_query="q=twitter%20&result_type=recent&since=2014-07-19&count=100")

If you want to build a search query and you’re not quite sure how it should look all put together, you can use Twitter’s
Advanced Search tool: https://twitter.com/search-advanced, and then use the part of search URL after the “?” to use
for the Api, removing the &src=typd portion.

27

https://dev.twitter.com/rest/public/search
https://twitter.com/search-advanced

python-twitter Documentation, Release 3.4.2

28 Chapter 8. Searching

CHAPTER 9

Using with Django

Additional template tags that expand tweet urls and urlize tweet text. See the django template tags available for use
with python-twitter: https://github.com/radzhome/python-twitter-django-tags

29

https://github.com/radzhome/python-twitter-django-tags

python-twitter Documentation, Release 3.4.2

30 Chapter 9. Using with Django

CHAPTER 10

Modules Documentation

10.1 API

A library that provides a Python interface to the Twitter API

class twitter.api.Api(consumer_key=None, consumer_secret=None, access_token_key=None,
access_token_secret=None, application_only_auth=False, in-
put_encoding=None, request_headers=None, cache=<object object>,
base_url=None, stream_url=None, upload_url=None, chunk_size=1048576,
use_gzip_compression=False, debugHTTP=False, timeout=None,
sleep_on_rate_limit=False, tweet_mode=’compat’, proxies=None)

Bases: object

A python interface into the Twitter API

By default, the Api caches results for 1 minute.

Example usage:

To create an instance of the twitter.Api class, with no authentication:

>>> import twitter
>>> api = twitter.Api()

To fetch a single user’s public status messages, where “user” is either a Twitter “short name” or their
user id.

>>> statuses = api.GetUserTimeline(user)
>>> print([s.text for s in statuses])

To use authentication, instantiate the twitter.Api class with a consumer key and secret; and the oAuth
key and secret:

>>> api = twitter.Api(consumer_key='twitter consumer key',
consumer_secret='twitter consumer secret',

(continues on next page)

31

python-twitter Documentation, Release 3.4.2

(continued from previous page)

access_token_key='the_key_given',
access_token_secret='the_key_secret')

To fetch your friends (after being authenticated):

>>> users = api.GetFriends()
>>> print([u.name for u in users])

To post a twitter status message (after being authenticated):

>>> status = api.PostUpdate('I love python-twitter!')
>>> print(status.text)
I love python-twitter!

There are many other methods, including:

>>> api.PostUpdates(status)
>>> api.PostDirectMessage(user, text)
>>> api.GetUser(user)
>>> api.GetReplies()
>>> api.GetUserTimeline(user)
>>> api.GetHomeTimeline()
>>> api.GetStatus(status_id)
>>> api.GetStatuses(status_ids)
>>> api.DestroyStatus(status_id)
>>> api.GetFriends(user)
>>> api.GetFollowers()
>>> api.GetFeatured()
>>> api.GetDirectMessages()
>>> api.GetSentDirectMessages()
>>> api.PostDirectMessage(user, text)
>>> api.DestroyDirectMessage(message_id)
>>> api.DestroyFriendship(user)
>>> api.CreateFriendship(user)
>>> api.LookupFriendship(user)
>>> api.VerifyCredentials()

CheckRateLimit(url)
Checks a URL to see the rate limit status for that endpoint.

Parameters url (str) – URL to check against the current rate limits.

Returns EndpointRateLimit namedtuple.

Return type namedtuple

ClearCredentials()
Clear any credentials for this instance

CreateBlock(user_id=None, screen_name=None, include_entities=True, skip_status=False)
Blocks the user specified by either user_id or screen_name.

Parameters

• user_id (int, optional) – The numerical ID of the user to block.

• screen_name (str, optional) – The screen name of the user to block.

• include_entities (bool, optional) – The entities node will not be included if
set to False.

32 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

• skip_status (bool, optional) – When set to False, the blocked User’s statuses
will not be included with the returned User object.

Returns A twitter.User instance representing the blocked user.

CreateFavorite(status=None, status_id=None, include_entities=True)
Favorites the specified status object or id as the authenticating user.

Returns the favorite status when successful.

Parameters

• status_id (int, optional) – The id of the twitter status to mark as a favorite.

• status (twitter.Status, optional) – The twitter.Status object to mark as a
favorite.

• include_entities (bool, optional) – The entities node will be omitted when
set to False.

Returns A twitter.Status instance representing the newly-marked favorite.

CreateFriendship(user_id=None, screen_name=None, follow=True, retweets=True, **kwargs)
Befriends the user specified by the user_id or screen_name.

Parameters

• user_id (int, optional) – A user_id to follow

• screen_name (str, optional) – A screen_name to follow

• follow (bool, optional) – Set to False to disable notifications for the target user

• retweets (bool, optional) – Enable or disable retweets from the target user.

Returns A twitter.User instance representing the befriended user.

CreateList(name, mode=None, description=None)
Creates a new list with the give name for the authenticated user.

Parameters

• name (str) – New name for the list

• mode (str, optional) – ‘public’ or ‘private’. Defaults to ‘public’.

• description (str, optional) – Description of the list.

Returns A twitter.List instance representing the new list

Return type twitter.list.List

CreateListsMember(list_id=None, slug=None, user_id=None, screen_name=None,
owner_screen_name=None, owner_id=None)

Add a new member (or list of members) to the specified list.

Parameters

• list_id (int, optional) – The numerical id of the list.

• slug (str, optional) – You can identify a list by its slug instead of its numerical
id. If you decide to do so, note that you’ll also have to specify the list owner using the
owner_id or owner_screen_name parameters.

• user_id (int, optional) – The user_id or a list of user_id’s to add to the list. If
not given, then screen_name is required.

10.1. API 33

python-twitter Documentation, Release 3.4.2

• screen_name (str, optional) – The screen_name or a list of screen_name’s to
add to the list. If not given, then user_id is required.

• owner_screen_name (str, optional) – The screen_name of the user who owns
the list being requested by a slug.

• owner_id (int, optional) – The user ID of the user who owns the list being re-
quested by a slug.

Returns A twitter.List instance representing the list subscribed to.

Return type twitter.list.List

CreateMute(user_id=None, screen_name=None, include_entities=True, skip_status=False)
Mutes the user specified by either user_id or screen_name.

Parameters

• user_id (int, optional) – The numerical ID of the user to mute.

• screen_name (str, optional) – The screen name of the user to mute.

• include_entities (bool, optional) – The entities node will not be included if
set to False.

• skip_status (bool, optional) – When set to False, the muted User’s statuses
will not be included with the returned User object.

Returns A twitter.User instance representing the muted user.

CreateSubscription(owner_screen_name=None, owner_id=None, list_id=None, slug=None)
Creates a subscription to a list by the authenticated user.

Parameters

• owner_screen_name (str, optional) – The screen_name of the user who owns
the list being requested by a slug.

• owner_id (int, optional) – The user ID of the user who owns the list being re-
quested by a slug.

• list_id (int, optional) – The numerical id of the list.

• slug (str, optional) – You can identify a list by its slug instead of its numerical
id. If you decide to do so, note that you’ll also have to specify the list owner using the
owner_id or owner_screen_name parameters.

Returns A twitter.User instance representing the user subscribed

Return type twitter.user.User

DEFAULT_CACHE_TIMEOUT = 60

DestroyBlock(user_id=None, screen_name=None, include_entities=True, skip_status=False)
Unlocks the user specified by either user_id or screen_name.

Parameters

• user_id (int, optional) – The numerical ID of the user to block.

• screen_name (str, optional) – The screen name of the user to block.

• include_entities (bool, optional) – The entities node will not be included if
set to False.

• skip_status (bool, optional) – When set to False, the blocked User’s statuses
will not be included with the returned User object.

34 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

Returns A twitter.User instance representing the blocked user.

DestroyDirectMessage(message_id, include_entities=True, return_json=False)
Destroys the direct message specified in the required ID parameter.

The twitter.Api instance must be authenticated, and the authenticating user must be the recipient of the
specified direct message.

Parameters

• message_id – The id of the direct message to be destroyed

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A twitter.DirectMessage instance representing the message destroyed

DestroyFavorite(status=None, status_id=None, include_entities=True)
Un-Favorites the specified status object or id as the authenticating user.

Returns the un-favorited status when successful.

Parameters

• status_id (int, optional) – The id of the twitter status to mark as a favorite.

• status (twitter.Status, optional) – The twitter.Status object to mark as a
favorite.

• include_entities (bool, optional) – The entities node will be omitted when
set to False.

Returns A twitter.Status instance representing the newly-unmarked favorite.

DestroyFriendship(user_id=None, screen_name=None)
Discontinues friendship with a user_id or screen_name.

Parameters

• user_id – A user_id to unfollow [Optional]

• screen_name – A screen_name to unfollow [Optional]

Returns A twitter.User instance representing the discontinued friend.

DestroyList(owner_screen_name=None, owner_id=None, list_id=None, slug=None)
Destroys the list identified by list_id or slug and one of owner_screen_name or owner_id.

Parameters

• owner_screen_name (str, optional) – The screen_name of the user who owns
the list being requested by a slug.

• owner_id (int, optional) – The user ID of the user who owns the list being re-
quested by a slug.

• list_id (int, optional) – The numerical id of the list.

• slug (str, optional) – You can identify a list by its slug instead of its numerical
id. If you decide to do so, note that you’ll also have to specify the list owner using the
owner_id or owner_screen_name parameters.

Returns A twitter.List instance representing the removed list.

Return type twitter.list.List

10.1. API 35

python-twitter Documentation, Release 3.4.2

DestroyListsMember(list_id=None, slug=None, owner_screen_name=None, owner_id=None,
user_id=None, screen_name=None)

Destroys the subscription to a list for the authenticated user.

Parameters

• list_id (int, optional) – The numerical id of the list.

• slug (str, optional) – You can identify a list by its slug instead of its numerical
id. If you decide to do so, note that you’ll also have to specify the list owner using the
owner_id or owner_screen_name parameters.

• owner_screen_name (str, optional) – The screen_name of the user who owns
the list being requested by a slug.

• owner_id (int, optional) – The user ID of the user who owns the list being re-
quested by a slug.

• user_id (int, optional) – The user_id or a list of user_id’s to remove from the
list. If not given, then screen_name is required.

• screen_name (str, optional) – The screen_name or a list of Screen_name’s to
remove from the list. If not given, then user_id is required.

Returns A twitter.List instance representing the removed list.

Return type twitter.list.List

DestroyMute(user_id=None, screen_name=None, include_entities=True, skip_status=False)
Unlocks the user specified by either user_id or screen_name.

Parameters

• user_id (int, optional) – The numerical ID of the user to mute.

• screen_name (str, optional) – The screen name of the user to mute.

• include_entities (bool, optional) – The entities node will not be included if
set to False.

• skip_status (bool, optional) – When set to False, the muted User’s statuses
will not be included with the returned User object.

Returns A twitter.User instance representing the muted user.

DestroyStatus(status_id, trim_user=False)
Destroys the status specified by the required ID parameter.

The authenticating user must be the author of the specified status.

Parameters

• status_id (int) – The numerical ID of the status you’re trying to destroy.

• trim_user (bool, optional) – When set to True, each tweet returned in a timeline
will include a user object including only the status authors numerical ID.

Returns A twitter.Status instance representing the destroyed status message

DestroySubscription(owner_screen_name=None, owner_id=None, list_id=None, slug=None)
Destroys the subscription to a list for the authenticated user.

Parameters

• owner_screen_name (str, optional) – The screen_name of the user who owns
the list being requested by a slug.

36 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

• owner_id (int, optional) – The user ID of the user who owns the list being re-
quested by a slug.

• list_id (int, optional) – The numerical id of the list.

• slug (str, optional) – You can identify a list by its slug instead of its numerical
id. If you decide to do so, note that you’ll also have to specify the list owner using the
owner_id or owner_screen_name parameters.

Returns A twitter.List instance representing the removed list.

Return type twitter.list.List

static GetAppOnlyAuthToken(consumer_key, consumer_secret)
Generate a Bearer Token from consumer_key and consumer_secret

GetBlocks(skip_status=False, include_entities=False)
Fetch the sequence of all users (as twitter.User instances), blocked by the currently authenticated user.

Parameters

• skip_status (bool, optional) – If True the statuses will not be returned in the
user items.

• include_entities (bool, optional) – When True, the user entities will be in-
cluded.

Returns A list of twitter.User instances, one for each blocked user.

GetBlocksIDs(stringify_ids=False)
Fetch the sequence of all user IDs blocked by the currently authenticated user.

Parameters stringify_ids (bool, optional) – If True user IDs will be returned as
strings rather than integers.

Returns A list of user IDs for all blocked users.

GetBlocksIDsPaged(cursor=-1, stringify_ids=False)
Fetch a page of the user IDs blocked by the currently authenticated user.

Parameters

• cursor (int, optional) – Should be set to -1 if you want the first page, thereafter
denotes the page of blocked users that you want to return.

• stringify_ids (bool, optional) – If True user IDs will be returned as strings
rather than integers.

Returns next_cursor, previous_cursor, list of user IDs of blocked users.

GetBlocksPaged(cursor=-1, skip_status=False, include_entities=False)
Fetch a page of the users (as twitter.User instances) blocked by the currently authenticated user.

Parameters

• cursor (int, optional) – Should be set to -1 if you want the first page, thereafter
denotes the page of blocked users that you want to return.

• skip_status (bool, optional) – If True the statuses will not be returned in the
user items.

• include_entities (bool, optional) – When True, the user entities will be in-
cluded.

Returns next_cursor, previous_cursor, list of twitter.User instances, one for each blocked user.

10.1. API 37

python-twitter Documentation, Release 3.4.2

GetDirectMessages(since_id=None, max_id=None, count=None, include_entities=True,
skip_status=False, full_text=False, page=None, return_json=False)

Returns a list of the direct messages sent to the authenticating user.

Parameters

• since_id – Returns results with an ID greater than (that is, more recent than) the speci-
fied ID. There are limits to the number of Tweets which can be accessed through the API.
If the limit of Tweets has occurred since the since_id, the since_id will be forced to the
oldest ID available. [Optional]

• max_id – Returns results with an ID less than (that is, older than) or equal to the specified
ID. [Optional]

• count – Specifies the number of direct messages to try and retrieve, up to a maximum
of 200. The value of count is best thought of as a limit to the number of Tweets to re-
turn because suspended or deleted content is removed after the count has been applied.
[Optional]

• include_entities – The entities node will be omitted when set to False. [Optional]

• skip_status – When set to True statuses will not be included in the returned user
objects. [Optional]

• full_text – When set to True full message will be included in the returned message
object if message length is bigger than CHARACTER_LIMIT characters. [Optional]

• page – If you want more than 200 messages, you can use this and get 20 messages each
time. You must recall it and increment the page value until it return nothing. You can’t use
count option with it. First value is 1 and not 0.

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A sequence of twitter.DirectMessage instances

GetFavorites(user_id=None, screen_name=None, count=None, since_id=None, max_id=None, in-
clude_entities=True, return_json=False)

Return a list of Status objects representing favorited tweets.

Returns up to 200 most recent tweets for the authenticated user.

Parameters

• user_id (int, optional) – Specifies the ID of the user for whom to return the
favorites. Helpful for disambiguating when a valid user ID is also a valid screen name.

• screen_name (str, optional) – Specifies the screen name of the user for whom
to return the favorites. Helpful for disambiguating when a valid screen name is also a user
ID.

• since_id (int, optional) – Returns results with an ID greater than (that is, more
recent than) the specified ID. There are limits to the number of Tweets which can be ac-
cessed through the API. If the limit of Tweets has occurred since the since_id, the since_id
will be forced to the oldest ID available.

• max_id (int, optional) – Returns only statuses with an ID less than (that is, older
than) or equal to the specified ID.

• count (int, optional) – Specifies the number of statuses to retrieve. May not be
greater than 200.

• include_entities (bool, optional) – The entities node will be omitted when
set to False.

38 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A sequence of Status instances, one for each favorited tweet up to count

GetFollowerIDs(user_id=None, screen_name=None, cursor=None, stringify_ids=False,
count=None, total_count=None)

Returns a list of twitter user id’s for every person that is following the specified user.

Parameters

• user_id – The id of the user to retrieve the id list for. [Optional]

• screen_name – The screen_name of the user to retrieve the id list for. [Optional]

• cursor – Specifies the Twitter API Cursor location to start at. Note: there are pagination
limits. [Optional]

• stringify_ids – if True then twitter will return the ids as strings instead of integers.
[Optional]

• count – The number of user id’s to retrieve per API request. Please be aware that this
might get you rate-limited if set to a small number. By default Twitter will retrieve 5000
UIDs per call. [Optional]

• total_count – The total amount of UIDs to retrieve. Good if the account has many
followers and you don’t want to get rate limited. The data returned might contain more
UIDs if total_count is not a multiple of count (5000 by default). [Optional]

Returns A list of integers, one for each user id.

GetFollowerIDsPaged(user_id=None, screen_name=None, cursor=-1, stringify_ids=False,
count=5000)

Make a cursor driven call to return a list of one page followers.

The caller is responsible for handling the cursor value and looping to gather all of the data

Parameters

• user_id – The twitter id of the user whose followers you are fetching. If not specified,
defaults to the authenticated user. [Optional]

• screen_name – The twitter name of the user whose followers you are fetching. If not
specified, defaults to the authenticated user. [Optional]

• cursor – Should be set to -1 for the initial call and then is used to control what result
page Twitter returns.

• stringify_ids – if True then twitter will return the ids as strings instead of integers.
[Optional]

• count – The number of user id’s to retrieve per API request. Please be aware that this
might get you rate-limited if set to a small number. By default Twitter will retrieve 5000
UIDs per call. [Optional]

Returns next_cursor, previous_cursor, data sequence of user ids, one for each follower

GetFollowers(user_id=None, screen_name=None, cursor=None, count=None, total_count=None,
skip_status=False, include_user_entities=True)

Fetch the sequence of twitter.User instances, one for each follower.

If both user_id and screen_name are specified, this call will return the followers of the user specified by
screen_name, however this behavior is undocumented by Twitter and may change without warning.

Parameters

10.1. API 39

python-twitter Documentation, Release 3.4.2

• user_id – The twitter id of the user whose followers you are fetching. If not specified,
defaults to the authenticated user. [Optional]

• screen_name – The twitter name of the user whose followers you are fetching. If not
specified, defaults to the authenticated user. [Optional]

• cursor – Should be set to -1 for the initial call and then is used to control what result
page Twitter returns.

• count – The number of users to return per page, up to a maximum of 200. Defaults to
200. [Optional]

• total_count – The upper bound of number of users to return, defaults to None.

• skip_status – If True the statuses will not be returned in the user items. [Optional]

• include_user_entities – When True, the user entities will be included. [Optional]

Returns A sequence of twitter.User instances, one for each follower

GetFollowersPaged(user_id=None, screen_name=None, cursor=-1, count=200,
skip_status=False, include_user_entities=True)

Make a cursor driven call to return the list of all followers

Parameters

• user_id – The twitter id of the user whose followers you are fetching. If not specified,
defaults to the authenticated user. [Optional]

• screen_name – The twitter name of the user whose followers you are fetching. If not
specified, defaults to the authenticated user. [Optional]

• cursor – Should be set to -1 for the initial call and then is used to control what result
page Twitter returns.

• count – The number of users to return per page, up to a maximum of 200. Defaults to
200. [Optional]

• skip_status – If True the statuses will not be returned in the user items. [Optional]

• include_user_entities – When True, the user entities will be included. [Optional]

Returns next_cursor, previous_cursor, data sequence of twitter.User instances, one for each fol-
lower

GetFriendIDs(user_id=None, screen_name=None, cursor=None, count=None, stringify_ids=False,
total_count=None)

Fetch a sequence of user ids, one for each friend. Returns a list of all the given user’s friends’ IDs. If no
user_id or screen_name is given, the friends will be those of the authenticated user.

Parameters

• user_id – The id of the user to retrieve the id list for. [Optional]

• screen_name – The screen_name of the user to retrieve the id list for. [Optional]

• cursor – Specifies the Twitter API Cursor location to start at. Note: there are pagination
limits. [Optional]

• stringify_ids – if True then twitter will return the ids as strings instead of integers.
[Optional]

• count – The number of user id’s to retrieve per API request. Please be aware that this
might get you rate-limited if set to a small number. By default Twitter will retrieve 5000
UIDs per call. [Optional]

40 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

• total_count – The total amount of UIDs to retrieve. Good if the account has many
followers and you don’t want to get rate limited. The data returned might contain more
UIDs if total_count is not a multiple of count (5000 by default). [Optional]

Returns A list of integers, one for each user id.

GetFriendIDsPaged(user_id=None, screen_name=None, cursor=-1, stringify_ids=False,
count=5000)

Make a cursor driven call to return the list of all friends

The caller is responsible for handling the cursor value and looping to gather all of the data

Parameters

• user_id – The twitter id of the user whose friends you are fetching. If not specified,
defaults to the authenticated user. [Optional]

• screen_name – The twitter name of the user whose friends you are fetching. If not
specified, defaults to the authenticated user. [Optional]

• cursor – Should be set to -1 for the initial call and then is used to control what result
page Twitter returns.

• stringify_ids – if True then twitter will return the ids as strings instead of integers.
[Optional]

• count – The number of user id’s to retrieve per API request. Please be aware that this
might get you rate-limited if set to a small number. By default Twitter will retrieve 5000
UIDs per call. [Optional]

Returns next_cursor, previous_cursor, data sequence of twitter.User instances, one for each
friend

GetFriends(user_id=None, screen_name=None, cursor=None, count=None, total_count=None,
skip_status=False, include_user_entities=True)

Fetch the sequence of twitter.User instances, one for each friend.

If both user_id and screen_name are specified, this call will return the followers of the user specified by
screen_name, however this behavior is undocumented by Twitter and may change without warning.

Parameters

• user_id – The twitter id of the user whose friends you are fetching. If not specified,
defaults to the authenticated user. [Optional]

• screen_name – The twitter name of the user whose friends you are fetching. If not
specified, defaults to the authenticated user. [Optional]

• cursor – Should be set to -1 for the initial call and then is used to control what result
page Twitter returns.

• count – The number of users to return per page, up to a maximum of 200. Defaults to
200. [Optional]

• total_count – The upper bound of number of users to return, defaults to None.

• skip_status – If True the statuses will not be returned in the user items. [Optional]

• include_user_entities – When True, the user entities will be included. [Optional]

Returns A sequence of twitter.User instances, one for each friend

GetFriendsPaged(user_id=None, screen_name=None, cursor=-1, count=200, skip_status=False,
include_user_entities=True)

Make a cursor driven call to return the list of all friends.

10.1. API 41

python-twitter Documentation, Release 3.4.2

Parameters

• user_id – The twitter id of the user whose friends you are fetching. If not specified,
defaults to the authenticated user. [Optional]

• screen_name – The twitter name of the user whose friends you are fetching. If not
specified, defaults to the authenticated user. [Optional]

• cursor – Should be set to -1 for the initial call and then is used to control what result
page Twitter returns.

• count – The number of users to return per page, up to a current maximum of 200. De-
faults to 200. [Optional]

• skip_status – If True the statuses will not be returned in the user items. [Optional]

• include_user_entities – When True, the user entities will be included. [Optional]

Returns next_cursor, previous_cursor, data sequence of twitter.User instances, one for each fol-
lower

GetHelpConfiguration()
Get basic help configuration details from Twitter.

Parameters None –

Returns Sets self._config and returns dict of help config values.

Return type dict

GetHomeTimeline(count=None, since_id=None, max_id=None, trim_user=False, ex-
clude_replies=False, contributor_details=False, include_entities=True)

Fetch a collection of the most recent Tweets and retweets posted by the authenticating user and the users
they follow.

The home timeline is central to how most users interact with Twitter.

Parameters

• count – Specifies the number of statuses to retrieve. May not be greater than 200. De-
faults to 20. [Optional]

• since_id – Returns results with an ID greater than (that is, more recent than) the speci-
fied ID. There are limits to the number of Tweets which can be accessed through the API.
If the limit of Tweets has occurred since the since_id, the since_id will be forced to the
oldest ID available. [Optional]

• max_id – Returns results with an ID less than (that is, older than) or equal to the specified
ID. [Optional]

• trim_user – When True, each tweet returned in a timeline will include a user object
including only the status authors numerical ID. Omit this parameter to receive the complete
user object. [Optional]

• exclude_replies – This parameter will prevent replies from appearing in the returned
timeline. Using exclude_replies with the count parameter will mean you will receive up-
to count tweets - this is because the count parameter retrieves that many tweets before
filtering out retweets and replies. [Optional]

• contributor_details – This parameter enhances the contributors element of the
status response to include the screen_name of the contributor. By default only the user_id
of the contributor is included. [Optional]

42 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

• include_entities – The entities node will be disincluded when set to false. This
node offers a variety of metadata about the tweet in a discreet structure, including:
user_mentions, urls, and hashtags. [Optional]

Returns A sequence of twitter.Status instances, one for each message

GetListMembers(list_id=None, slug=None, owner_id=None, owner_screen_name=None,
skip_status=False, include_entities=False)

Fetch the sequence of twitter.User instances, one for each member of the given list_id or slug.

Parameters

• list_id (int, optional) – Specifies the ID of the list to retrieve.

• slug (str, optional) – The slug name for the list to retrieve. If you specify None
for the list_id, then you have to provide either a owner_screen_name or owner_id.

• owner_id (int, optional) – Specifies the ID of the user for whom to return the list
timeline. Helpful for disambiguating when a valid user ID is also a valid screen name.

• owner_screen_name (str, optional) – Specifies the screen name of the user for
whom to return the user_timeline. Helpful for disambiguating when a valid screen name
is also a user ID.

• skip_status (bool, optional) – If True the statuses will not be returned in the
user items.

• include_entities (bool, optional) – If False, the timeline will not contain
additional metadata. Defaults to True.

Returns A sequence of twitter.user.User instances, one for each member of the twitter.list.List.

Return type list

GetListMembersPaged(list_id=None, slug=None, owner_id=None, owner_screen_name=None,
cursor=-1, count=100, skip_status=False, include_entities=True)

Fetch the sequence of twitter.User instances, one for each member of the given list_id or slug.

Parameters

• list_id (int, optional) – Specifies the ID of the list to retrieve.

• slug (str, optional) – The slug name for the list to retrieve. If you specify None
for the list_id, then you have to provide either a owner_screen_name or owner_id.

• owner_id (int, optional) – Specifies the ID of the user for whom to return the list
timeline. Helpful for disambiguating when a valid user ID is also a valid screen name.

• owner_screen_name (str, optional) – Specifies the screen name of the user for
whom to return the user_timeline. Helpful for disambiguating when a valid screen name
is also a user ID.

• cursor (int, optional) – Should be set to -1 for the initial call and then is used to
control what result page Twitter returns.

• skip_status (bool, optional) – If True the statuses will not be returned in the
user items.

• include_entities (bool, optional) – If False, the timeline will not contain
additional metadata. Defaults to True.

Returns A sequence of twitter.user.User instances, one for each member of the twitter.list.List.

Return type list

10.1. API 43

python-twitter Documentation, Release 3.4.2

GetListTimeline(list_id=None, slug=None, owner_id=None, owner_screen_name=None,
since_id=None, max_id=None, count=None, include_rts=True, in-
clude_entities=True, return_json=False)

Fetch the sequence of Status messages for a given List ID.

Parameters

• list_id (int, optional) – Specifies the ID of the list to retrieve.

• slug (str, optional) – The slug name for the list to retrieve. If you specify None
for the list_id, then you have to provide either a owner_screen_name or owner_id.

• owner_id (int, optional) – Specifies the ID of the user for whom to return the list
timeline. Helpful for disambiguating when a valid user ID is also a valid screen name.

• owner_screen_name (str, optional) – Specifies the screen name of the user for
whom to return the user_timeline. Helpful for disambiguating when a valid screen name
is also a user ID.

• since_id (int, optional) – Returns results with an ID greater than (that is, more
recent than) the specified ID. There are limits to the number of Tweets which can be ac-
cessed through the API. If the limit of Tweets has occurred since the since_id, the since_id
will be forced to the oldest ID available.

• max_id (int, optional) – Returns only statuses with an ID less than (that is, older
than) or equal to the specified ID.

• count (int, optional) – Specifies the number of statuses to retrieve. May not be
greater than 200.

• include_rts (bool, optional) – If True, the timeline will contain native retweets
(if they exist) in addition to the standard stream of tweets.

• include_entities (bool, optional) – If False, the timeline will not contain
additional metadata. Defaults to True.

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A list of twitter.status.Status instances, one for each message up to count.

Return type list

GetLists(user_id=None, screen_name=None)
Fetch the sequence of lists for a user. If no user_id or screen_name is passed, the data returned will be for
the authenticated user.

Parameters

• user_id – The ID of the user for whom to return results for. [Optional]

• screen_name – The screen name of the user for whom to return results for. [Optional]

• count – The amount of results to return per page. No more than 1000 results will ever
be returned in a single page. Defaults to 20. [Optional]

• cursor – The “page” value that Twitter will use to start building the list sequence from.
Use the value of -1 to start at the beginning. Twitter will return in the result the values for
next_cursor and previous_cursor. [Optional]

Returns A sequence of twitter.List instances, one for each list

GetListsList(screen_name=None, user_id=None, reverse=False, return_json=False)
Returns all lists the user subscribes to, including their own. If no user_id or screen_name is specified, the
data returned will be for the authenticated user.

44 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

Parameters

• screen_name (str, optional) – Specifies the screen name of the user for whom
to return the user_timeline. Helpful for disambiguating when a valid screen name is also
a user ID.

• user_id (int, optional) – Specifies the ID of the user for whom to return the
user_timeline. Helpful for disambiguating when a valid user ID is also a valid screen
name.

• reverse (bool, optional) – If False, the owned lists will be returned first, othewise
subscribed lists will be at the top. Returns a maximum of 100 entries regardless. Defaults
to False.

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A sequence of twitter.List instances.

Return type list

GetListsPaged(user_id=None, screen_name=None, cursor=-1, count=20)
Fetch the sequence of lists for a user. If no user_id or screen_name is passed, the data returned will be for
the authenticated user.

Parameters

• user_id (int, optional) – The ID of the user for whom to return results for.

• screen_name (str, optional) – The screen name of the user for whom to return
results for.

• count (int, optional) – The amount of results to return per page. No more than
1000 results will ever be returned in a single page. Defaults to 20.

• cursor (int, optional) – The “page” value that Twitter will use to start building
the list sequence from. Use the value of -1 to start at the beginning. Twitter will return in
the result the values for next_cursor and previous_cursor.

Returns next_cursor (int), previous_cursor (int), list of twitter.List instances, one for each list

GetMemberships(user_id=None, screen_name=None, count=20, cursor=-1, fil-
ter_to_owned_lists=False, return_json=False)

Obtain the lists the specified user is a member of. If no user_id or screen_name is specified, the data
returned will be for the authenticated user.

Returns a maximum of 20 lists per page by default.

Parameters

• user_id (int, optional) – The ID of the user for whom to return results for.

• screen_name (str, optional) – The screen name of the user for whom to return
results for.

• count (int, optional) – The amount of results to return per page. No more than
1000 results will ever be returned in a single page. Defaults to 20.

• cursor (int, optional) – The “page” value that Twitter will use to start building
the list sequence from. Use the value of -1 to start at the beginning. Twitter will return in
the result the values for next_cursor and previous_cursor.

• filter_to_owned_lists (bool, optional) – Set to True to return only the
lists the authenticating user owns, and the user specified by user_id or screen_name is a
member of. Default value is False.

10.1. API 45

python-twitter Documentation, Release 3.4.2

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A list of twitter.List instances, one for each list in which the user specified by user_id
or screen_name is a member

Return type list

GetMentions(count=None, since_id=None, max_id=None, trim_user=False, contribu-
tor_details=False, include_entities=True, return_json=False)

Returns the 20 most recent mentions (status containing @screen_name) for the authenticating user.

Parameters

• count – Specifies the number of tweets to try and retrieve, up to a maximum of 200.
The value of count is best thought of as a limit to the number of tweets to return because
suspended or deleted content is removed after the count has been applied. [Optional]

• since_id – Returns results with an ID greater than (that is, more recent than) the speci-
fied ID. There are limits to the number of Tweets which can be accessed through the API.
If the limit of Tweets has occurred since the since_id, the since_id will be forced to the
oldest ID available. [Optional]

• max_id – Returns only statuses with an ID less than (that is, older than) the specified ID.
[Optional]

• trim_user – When set to True, each tweet returned in a timeline will include a user
object including only the status authors numerical ID. Omit this parameter to receive the
complete user object. [Optional]

• contributor_details – If set to True, this parameter enhances the contributors ele-
ment of the status response to include the screen_name of the contributor. By default only
the user_id of the contributor is included. [Optional]

• include_entities – The entities node will be disincluded when set to False. [Op-
tional]

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A sequence of twitter.Status instances, one for each mention of the user.

GetMutes(skip_status=False, include_entities=False)
Fetch the sequence of all users (as twitter.User instances), muted by the currently authenticated user.

Parameters

• skip_status (bool, optional) – If True the statuses will not be returned in the
user items.

• include_entities (bool, optional) – When True, the user entities will be in-
cluded.

Returns A list of twitter.User instances, one for each muted user.

GetMutesIDs(stringify_ids=False)
Fetch the sequence of all user IDs muted by the currently authenticated user.

Parameters stringify_ids (bool, optional) – If True user IDs will be returned as
strings rather than integers.

Returns A list of user IDs for all muted users.

GetMutesIDsPaged(cursor=-1, stringify_ids=False)
Fetch a page of the user IDs muted by the currently authenticated user.

46 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

Parameters

• cursor (int, optional) – Should be set to -1 if you want the first page, thereafter
denotes the page of muted users that you want to return.

• stringify_ids (bool, optional) – If True user IDs will be returned as strings
rather than integers.

Returns next_cursor, previous_cursor, list of user IDs of muted users.

GetMutesPaged(cursor=-1, skip_status=False, include_entities=False)
Fetch a page of the users (as twitter.User instances) muted by the currently authenticated user.

Parameters

• cursor (int, optional) – Should be set to -1 if you want the first page, thereafter
denotes the page of muted users that you want to return.

• skip_status (bool, optional) – If True the statuses will not be returned in the
user items.

• include_entities (bool, optional) – When True, the user entities will be in-
cluded.

Returns next_cursor, previous_cursor, list of twitter.User instances, one for each muted user.

GetReplies(since_id=None, count=None, max_id=None, trim_user=False)
Get a sequence of status messages representing the 20 most recent replies (status updates prefixed with
@twitterID) to the authenticating user.

Parameters

• since_id – Returns results with an ID greater than (that is, more recent than) the speci-
fied ID. There are limits to the number of Tweets which can be accessed through the API.
If the limit of Tweets has occurred since the since_id, the since_id will be forced to the
oldest ID available. [Optional]

• max_id – Returns results with an ID less than (that is, older than) or equal to the specified
ID. [Optional]

• trim_user – If True the returned payload will only contain the user IDs, otherwise the
payload will contain the full user data item. [Optional]

Returns A sequence of twitter.Status instances, one for each reply to the user.

GetRetweeters(status_id, cursor=None, count=100, stringify_ids=False)
Returns a collection of up to 100 user IDs belonging to users who have retweeted the tweet specified by
the status_id parameter.

Parameters

• status_id – the tweet’s numerical ID

• cursor – breaks the ids into pages of no more than 100.

• stringify_ids – returns the IDs as unicode strings. [Optional]

Returns A list of user IDs

GetRetweets(statusid, count=None, trim_user=False)
Returns up to 100 of the first retweets of the tweet identified by statusid

Parameters

• statusid (int) – The ID of the tweet for which retweets should be searched for

10.1. API 47

python-twitter Documentation, Release 3.4.2

• count (int, optional) – The number of status messages to retrieve.

• trim_user (bool, optional) – If True the returned payload will only contain the
user IDs, otherwise the payload will contain the full user data item.

Returns A list of twitter.Status instances, which are retweets of statusid

GetRetweetsOfMe(count=None, since_id=None, max_id=None, trim_user=False, in-
clude_entities=True, include_user_entities=True)

Returns up to 100 of the most recent tweets of the user that have been retweeted by others.

Parameters

• count – The number of retweets to retrieve, up to 100. Defaults to 20. [Optional]

• since_id – Returns results with an ID greater than (newer than) this ID. [Optional]

• max_id – Returns results with an ID less than or equal to this ID. [Optional]

• trim_user – When True, the user object for each tweet will only be an ID. [Optional]

• include_entities – When True, the tweet entities will be included. [Optional]

• include_user_entities – When True, the user entities will be included. [Optional]

GetSearch(term=None, raw_query=None, geocode=None, since_id=None, max_id=None, un-
til=None, since=None, count=15, lang=None, locale=None, result_type=’mixed’, in-
clude_entities=None, return_json=False)

Return twitter search results for a given term. You must specify one of term, geocode, or raw_query.

Parameters

• term (str, optional) – Term to search by. Optional if you include geocode.

• raw_query (str, optional) – A raw query as a string. This should be everything
after the “?” in the URL (i.e., the query parameters). You are responsible for all type check-
ing and ensuring that the query string is properly formatted, as it will only be URL-encoded
before be passed directly to Twitter with no other checks performed. For advanced usage
only. This will override any other parameters passed

• since_id (int, optional) – Returns results with an ID greater than (that is, more
recent than) the specified ID. There are limits to the number of Tweets which can be ac-
cessed through the API. If the limit of Tweets has occurred since the since_id, the since_id
will be forced to the oldest ID available.

• max_id (int, optional) – Returns only statuses with an ID less than (that is, older
than) or equal to the specified ID.

• until (str, optional) – Returns tweets generated before the given date. Date
should be formatted as YYYY-MM-DD.

• since (str, optional) – Returns tweets generated since the given date. Date should
be formatted as YYYY-MM-DD.

• geocode (str or list or tuple, optional) – Geolocation within which to
search for tweets. Can be either a string in the form of “latitude,longitude,radius” where
latitude and longitude are floats and radius is a string such as “1mi” or “1km” (“mi” or
“km” are the only units allowed). For example:

>>> api.GetSearch(geocode="37.781157,-122.398720,1mi").

Otherwise, you can pass a list of either floats or strings for lat/long and a string for radius:

48 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

>>> api.GetSearch(geocode=[37.781157, -122.398720, "1mi"])
>>> # or:
>>> api.GetSearch(geocode=(37.781157, -122.398720, "1mi"))
>>> # or:
>>> api.GetSearch(geocode=("37.781157", "-122.398720", "1mi"))

• count (int, optional) – Number of results to return. Default is 15 and maxmimum
that Twitter returns is 100 irrespective of what you type in.

• lang (str, optional) – Language for results as ISO 639-1 code. Default is None
(all languages).

• locale (str, optional) – Language of the search query. Currently only ‘ja’ is
effective. This is intended for language-specific consumers and the default should work in
the majority of cases.

• result_type (str, optional) – Type of result which should be returned. Default
is “mixed”. Valid options are “mixed, “recent”, and “popular”.

• include_entities (bool, optional) – If True, each tweet will include a node
called “entities”. This node offers a variety of metadata about the tweet in a discrete
structure, including: user_mentions, urls, and hashtags.

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.Userret

Returns A sequence of twitter.Status instances, one for each message containing the term, within
the bounds of the geocoded area, or given by the raw_query.

Return type list

GetSentDirectMessages(since_id=None, max_id=None, count=None, page=None, in-
clude_entities=True, return_json=False)

Returns a list of the direct messages sent by the authenticating user.

Parameters

• since_id (int, optional) – Returns results with an ID greater than (that is, more
recent than) the specified ID. There are limits to the number of Tweets which can be ac-
cessed through the API. If the limit of Tweets has occured since the since_id, the since_id
will be forced to the oldest ID available.

• max_id (int, optional) – Returns results with an ID less than (that is, older than)
or equal to the specified ID.

• count (int, optional) – Specifies the number of direct messages to try and retrieve,
up to a maximum of 200. The value of count is best thought of as a limit to the number of
Tweets to return because suspended or deleted content is removed after the count has been
applied.

• page (int, optional) – Specifies the page of results to retrieve. Note: there are
pagination limits. [Optional]

• include_entities (bool, optional) – The entities node will be omitted when
set to False.

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A sequence of twitter.DirectMessage instances

10.1. API 49

python-twitter Documentation, Release 3.4.2

GetShortUrlLength(https=False)
Returns number of characters reserved per URL included in a tweet.

Parameters https (bool, optional) – If True, return number of characters reserved for
https urls or, if False, return number of character reserved for http urls.

Returns Number of characters reserved per URL.

Return type (int)

GetStatus(status_id, trim_user=False, include_my_retweet=True, include_entities=True, in-
clude_ext_alt_text=True)

Returns a single status message, specified by the status_id parameter.

Parameters

• status_id – The numeric ID of the status you are trying to retrieve.

• trim_user – When set to True, each tweet returned in a timeline will include a user
object including only the status authors numerical ID. Omit this parameter to receive the
complete user object. [Optional]

• include_my_retweet – When set to True, any Tweets returned that have been
retweeted by the authenticating user will include an additional current_user_retweet node,
containing the ID of the source status for the retweet. [Optional]

• include_entities – If False, the entities node will be disincluded. This node offers a
variety of metadata about the tweet in a discreet structure, including: user_mentions, urls,
and hashtags. [Optional]

Returns A twitter.Status instance representing that status message

GetStatusOembed(status_id=None, url=None, maxwidth=None, hide_media=False,
hide_thread=False, omit_script=False, align=None, related=None, lang=None)

Returns information allowing the creation of an embedded representation of a Tweet on third party sites.

Specify tweet by the id or url parameter.

Parameters

• status_id – The numeric ID of the status you are trying to embed.

• url – The url of the status you are trying to embed.

• maxwidth – The maximum width in pixels that the embed should be rendered at. This
value is constrained to be between 250 and 550 pixels. [Optional]

• hide_media – Specifies whether the embedded Tweet should automatically expand im-
ages. [Optional]

• hide_thread – Specifies whether the embedded Tweet should automatically show the
original message in the case that the embedded Tweet is a reply. [Optional]

• omit_script – Specifies whether the embedded Tweet HTML should include a
<script> element pointing to widgets.js. [Optional]

• align – Specifies whether the embedded Tweet should be left aligned, right aligned, or
centered in the page. [Optional]

• related – A comma sperated string of related screen names. [Optional]

• lang – Language code for the rendered embed. [Optional]

Returns A dictionary with the response.

50 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

GetStatuses(status_ids, trim_user=False, include_entities=True, map=False)
Returns a list of status messages, specified by the status_ids parameter.

Parameters

• status_ids – A list of the numeric ID of the statuses you are trying to retrieve.

• trim_user – When set to True, each tweet returned in a timeline will include a user
object including only the status authors numerical ID. Omit this parameter to receive the
complete user object. [Optional]

• include_entities – If False, the entities node will be disincluded. This node offers a
variety of metadata about the tweet in a discreet structure, including: user_mentions, urls,
and hashtags. [Optional]

• map – If True, returns a dictionary with status id as key and returned status data (or None
if tweet does not exist or is inaccessible) as value. Otherwise returns an unordered list of
successfully retrieved Tweets. [Optional]

Returns A dictionary or unordered list (depending on the parameter ‘map’) of twitter Status
instances representing the status messages.

GetStreamFilter(follow=None, track=None, locations=None, languages=None, delimited=None,
stall_warnings=None, filter_level=None)

Returns a filtered view of public statuses.

Parameters

• follow – A list of user IDs to track. [Optional]

• track – A list of expressions to track. [Optional]

• locations – A list of Longitude,Latitude pairs (as strings) specifying bounding boxes
for the tweets’ origin. [Optional]

• delimited – Specifies a message length. [Optional]

• stall_warnings – Set to True to have Twitter deliver stall warnings. [Optional]

• languages – A list of Languages. Will only return Tweets that have been detected as
being written in the specified languages. [Optional]

• filter_level – Specifies level of filtering applied to stream. Set to None, ‘low’ or
‘medium’. [Optional]

Returns A twitter stream

GetStreamSample(delimited=False, stall_warnings=True)
Returns a small sample of public statuses.

Parameters

• delimited – Specifies a message length. [Optional]

• stall_warnings – Set to True to have Twitter deliver stall warnings. [Optional]

Returns A Twitter stream

GetSubscriptions(user_id=None, screen_name=None, count=20, cursor=-1, return_json=False)
Obtain a collection of the lists the specified user is subscribed to. If neither user_id or screen_name is
specified, the data returned will be for the authenticated user.

The list will contain a maximum of 20 lists per page by default.

Does not include the user’s own lists.

Parameters

10.1. API 51

python-twitter Documentation, Release 3.4.2

• user_id (int, optional) – The ID of the user for whom to return results for.

• screen_name (str, optional) – The screen name of the user for whom to return
results for.

• count (int, optional) – The amount of results to return per page. No more than
1000 results will ever be returned in a single page. Defaults to 20.

• cursor (int, optional) – The “page” value that Twitter will use to start building
the list sequence from. Use the value of -1 to start at the beginning. Twitter will return in
the result the values for next_cursor and previous_cursor.

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A sequence of twitter.List instances, one for each list

Return type twitter.list.List

GetTrendsCurrent(exclude=None)
Get the current top trending topics (global)

Parameters exclude – Appends the exclude parameter as a request parameter. Currently only
exclude=hashtags is supported. [Optional]

Returns A list with 10 entries. Each entry contains a trend.

GetTrendsWoeid(woeid, exclude=None)
Return the top 10 trending topics for a specific WOEID, if trending information is available for it.

Parameters

• woeid – the Yahoo! Where On Earth ID for a location.

• exclude – Appends the exclude parameter as a request parameter. Currently only ex-
clude=hashtags is supported. [Optional]

Returns A list with 10 entries. Each entry contains a trend.

GetUser(user_id=None, screen_name=None, include_entities=True, return_json=False)
Returns a single user.

Parameters

• user_id (int, optional) – The id of the user to retrieve.

• screen_name (str, optional) – The screen name of the user for whom to return
results for. Either a user_id or screen_name is required for this method.

• include_entities (bool, optional) – The entities node will be omitted when
set to False.

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A twitter.User instance representing that user

GetUserRetweets(count=None, since_id=None, max_id=None, trim_user=False)
Fetch the sequence of retweets made by the authenticated user.

Parameters

• count – The number of status messages to retrieve. [Optional]

• since_id – Returns results with an ID greater than (that is, more recent than) the speci-
fied ID. There are limits to the number of Tweets which can be accessed through the API.

52 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

If the limit of Tweets has occurred since the since_id, the since_id will be forced to the
oldest ID available. [Optional]

• max_id – Returns results with an ID less than (that is, older than) or equal to the specified
ID. [Optional]

• trim_user – If True the returned payload will only contain the user IDs, otherwise the
payload will contain the full user data item. [Optional]

Returns A sequence of twitter.Status instances, one for each message up to count

GetUserStream(replies=’all’, withuser=’user’, track=None, locations=None, delimited=None,
stall_warnings=None, stringify_friend_ids=False, filter_level=None, session=None,
include_keepalive=False)

Returns the data from the user stream.

Parameters

• replies – Specifies whether to return additional @replies in the stream. Defaults to
‘all’.

• withuser – Specifies whether to return information for just the authenticating user, or
include messages from accounts the user follows. [Optional]

• track – A list of expressions to track. [Optional]

• locations – A list of Latitude,Longitude pairs (as strings) specifying bounding boxes
for the tweets’ origin. [Optional]

• delimited – Specifies a message length. [Optional]

• stall_warnings – Set to True to have Twitter deliver stall warnings. [Optional]

• stringify_friend_ids – Specifies whether to send the friends list preamble as an
array of integers or an array of strings. [Optional]

• filter_level – Specifies level of filtering applied to stream. Set to None, low or
medium. [Optional]

Returns A twitter stream

GetUserSuggestion(category)
Returns a list of users in a category :param category: The Category object to limit the search by

Returns A list of users in that category

GetUserSuggestionCategories()

Return the list of suggested user categories, this can be used in GetUserSuggestion function

Returns A list of categories

GetUserTimeline(user_id=None, screen_name=None, since_id=None, max_id=None,
count=None, include_rts=True, trim_user=False, exclude_replies=False)

Fetch the sequence of public Status messages for a single user.

The twitter.Api instance must be authenticated if the user is private.

Parameters

• user_id (int, optional) – Specifies the ID of the user for whom to return the
user_timeline. Helpful for disambiguating when a valid user ID is also a valid screen
name.

10.1. API 53

python-twitter Documentation, Release 3.4.2

• screen_name (str, optional) – Specifies the screen name of the user for whom
to return the user_timeline. Helpful for disambiguating when a valid screen name is also
a user ID.

• since_id (int, optional) – Returns results with an ID greater than (that is, more
recent than) the specified ID. There are limits to the number of Tweets which can be ac-
cessed through the API. If the limit of Tweets has occurred since the since_id, the since_id
will be forced to the oldest ID available.

• max_id (int, optional) – Returns only statuses with an ID less than (that is, older
than) or equal to the specified ID.

• count (int, optional) – Specifies the number of statuses to retrieve. May not be
greater than 200.

• include_rts (bool, optional) – If True, the timeline will contain native retweets
(if they exist) in addition to the standard stream of tweets.

• trim_user (bool, optional) – If True, statuses will only contain the numerical
user ID only. Otherwise a full user object will be returned for each status.

• exclude_replies (bool, optional) – If True, this will prevent replies from ap-
pearing in the returned timeline. Using exclude_replies with the count parameter will
mean you will receive up-to count tweets - this is because the count parameter retrieves
that many tweets before filtering out retweets and replies. This parameter is only supported
for JSON and XML responses.

Returns A sequence of Status instances, one for each message up to count

GetUsersSearch(term=None, page=1, count=20, include_entities=None)
Return twitter user search results for a given term.

Parameters

• term – Term to search by.

• page – Page of results to return. Default is 1 [Optional]

• count – Number of results to return. Default is 20 [Optional]

• include_entities – If True, each tweet will include a node called “entities,”. This
node offers a variety of metadata about the tweet in a discrete structure, including:
user_mentions, urls, and hashtags. [Optional]

Returns A sequence of twitter.User instances, one for each message containing the term

IncomingFriendship(cursor=None, stringify_ids=None)
Returns a collection of user IDs belonging to users who have pending request to follow the authenticated
user.

Parameters

• cursor – breaks the ids into pages of no more than 5000.

• stringify_ids – returns the IDs as unicode strings. [Optional]

Returns A list of user IDs

InitializeRateLimit()
Make a call to the Twitter API to get the rate limit status for the currently authenticated user or application.

Returns None.

LookupFriendship(user_id=None, screen_name=None, return_json=False)
Lookup friendship status for user to authed user.

54 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

Users may be specified either as lists of either user_ids, screen_names, or twitter.User objects. The list of
users that are queried is the union of all specified parameters.

Up to 100 users may be specified.

Parameters

• user_id (int, User, or list of ints or Users, optional) – A list
of user_ids to retrieve extended information.

• screen_name (string, User, or list of strings or Users,
optional) – A list of screen_names to retrieve extended information.

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A list of twitter.UserStatus instance representing the friendship status between the spec-
ified users and the authenticated user.

Return type list

OutgoingFriendship(cursor=None, stringify_ids=None)
Returns a collection of user IDs for every protected user for whom the authenticated user has a pending
follow request.

Parameters

• cursor – breaks the ids into pages of no more than 5000.

• stringify_ids – returns the IDs as unicode strings. [Optional]

Returns A list of user IDs

PostDirectMessage(text, user_id=None, screen_name=None, return_json=False)
Post a twitter direct message from the authenticated user.

Parameters

• text – The message text to be posted.

• user_id – The ID of the user who should receive the direct message.

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.DirectMessage

Returns A twitter.DirectMessage instance representing the message posted

PostMediaMetadata(media_id, alt_text=None)
Provide addtional data for uploaded media.

Parameters

• media_id – ID of a previously uploaded media item.

• alt_text – Image Alternate Text.

PostRetweet(status_id, trim_user=False)
Retweet a tweet with the Retweet API.

Parameters

• status_id – The numerical id of the tweet that will be retweeted

• trim_user – If True the returned payload will only contain the user IDs, otherwise the
payload will contain the full user data item. [Optional]

Returns A twitter.Status instance representing the original tweet with retweet details embedded.

10.1. API 55

python-twitter Documentation, Release 3.4.2

PostUpdate(status, media=None, media_additional_owners=None, media_category=None,
in_reply_to_status_id=None, auto_populate_reply_metadata=False, ex-
clude_reply_user_ids=None, latitude=None, longitude=None, place_id=None,
display_coordinates=False, trim_user=False, verify_status_length=True, attach-
ment_url=None)

Post a twitter status message from the authenticated user.

https://dev.twitter.com/docs/api/1.1/post/statuses/update

Parameters

• status (str) – The message text to be posted. Must be less than or equal to CHARAC-
TER_LIMIT characters.

• media (int, str, fp, optional) – A URL, a local file, or a file-like object
(something with a read() method), or a list of any combination of the above.

• media_additional_owners (list, optional) – A list of user ids representing
Twitter users that should be able to use the uploaded media in their tweets. If you pass a
list of media, then additional_owners will apply to each object. If you need more granular
control, please use the UploadMedia* methods.

• media_category (str, optional) – Only for use with the AdsAPI. See https:
//dev.twitter.com/ads/creative/promoted-video-overview if this applies to your application.

• in_reply_to_status_id (int, optional) – The ID of an existing status that
the status to be posted is in reply to. This implicitly sets the in_reply_to_user_id attribute
of the resulting status to the user ID of the message being replied to. Invalid/missing status
IDs will be ignored.

• auto_populate_reply_metadata (bool, optional) – Automatically include
the @usernames of the users mentioned or participating in the tweet to which this tweet is
in reply.

• exclude_reply_user_ids (list, optional) – Remove given user_ids (not
@usernames) from the tweet’s automatically generated reply metadata.

• attachment_url (str, optional) – URL to an attachment resource: one to four
photos, a GIF, video, Quote Tweet, or DM deep link. If not specified and media parameter
is not None, we will attach the first media object as the attachment URL. If a bad URL is
passed, Twitter will raise an error.

• latitude (float, optional) – Latitude coordinate of the tweet in degrees. Will
only work in conjunction with longitude argument. Both longitude and latitude will be
ignored by twitter if the user has a false geo_enabled setting.

• longitude (float, optional) – Longitude coordinate of the tweet in degrees.
Will only work in conjunction with latitude argument. Both longitude and latitude will
be ignored by twitter if the user has a false geo_enabled setting.

• place_id (int, optional) – A place in the world. These IDs can be retrieved from
GET geo/reverse_geocode.

• display_coordinates (bool, optional) – Whether or not to put a pin on the
exact coordinates a tweet has been sent from.

• trim_user (bool, optional) – If True the returned payload will only contain the
user IDs, otherwise the payload will contain the full user data item.

• verify_status_length (bool, optional) – If True, api throws a hard error
that the status is over CHARACTER_LIMIT characters. If False, Api will attempt to post
the status.

56 Chapter 10. Modules Documentation

https://dev.twitter.com/docs/api/1.1/post/statuses/update
https://dev.twitter.com/ads/creative/promoted-video-overview
https://dev.twitter.com/ads/creative/promoted-video-overview

python-twitter Documentation, Release 3.4.2

Returns (twitter.Status) A twitter.Status instance representing the message posted.

PostUpdates(status, continuation=None, **kwargs)
Post one or more twitter status messages from the authenticated user.

Unlike api.PostUpdate, this method will post multiple status updates if the message is longer than CHAR-
ACTER_LIMIT characters.

Parameters

• status – The message text to be posted. May be longer than CHARACTER_LIMIT
characters.

• continuation – The character string, if any, to be appended to all but the last message.
Note that Twitter strips trailing ‘. . . ’ strings from messages. Consider using the unicode
u2026 character (horizontal ellipsis) instead. [Defaults to None]

• **kwargs – See api.PostUpdate for a list of accepted parameters.

Returns A of list twitter.Status instance representing the messages posted.

SetCache(cache)
Override the default cache. Set to None to prevent caching.

Parameters cache – An instance that supports the same API as the twitter._FileCache

SetCacheTimeout(cache_timeout)
Override the default cache timeout.

Parameters cache_timeout – Time, in seconds, that responses should be reused.

SetCredentials(consumer_key, consumer_secret, access_token_key=None, ac-
cess_token_secret=None, application_only_auth=False)

Set the consumer_key and consumer_secret for this instance

Parameters

• consumer_key – The consumer_key of the twitter account.

• consumer_secret – The consumer_secret for the twitter account.

• access_token_key – The oAuth access token key value you retrieved from running
get_access_token.py.

• access_token_secret – The oAuth access token’s secret, also retrieved from the
get_access_token.py run.

• application_only_auth – Whether to generate a bearer token and use Application-
Only Auth

SetSource(source)
Suggest the “from source” value to be displayed on the Twitter web site.

The value of the ‘source’ parameter must be first recognized by the Twitter server.

New source values are authorized on a case by case basis by the Twitter development team.

Parameters source – The source name as a string. Will be sent to the server as the ‘source’
parameter.

SetUrllib(urllib)
Override the default urllib implementation.

Parameters urllib – An instance that supports the same API as the urllib2 module

SetUserAgent(user_agent)
Override the default user agent.

10.1. API 57

python-twitter Documentation, Release 3.4.2

Parameters user_agent – A string that should be send to the server as the user-agent.

SetXTwitterHeaders(client, url, version)
Set the X-Twitter HTTP headers that will be sent to the server.

Parameters

• client – The client name as a string. Will be sent to the server as the ‘X-Twitter-Client’
header.

• url – The URL of the meta.xml as a string. Will be sent to the server as the ‘X-Twitter-
Client-URL’ header.

• version – The client version as a string. Will be sent to the server as the ‘X-Twitter-
Client-Version’ header.

ShowFriendship(source_user_id=None, source_screen_name=None, target_user_id=None, tar-
get_screen_name=None)

Returns information about the relationship between the two users.

Parameters

• source_id – The user_id of the subject user [Optional]

• source_screen_name – The screen_name of the subject user [Optional]

• target_id – The user_id of the target user [Optional]

• target_screen_name – The screen_name of the target user [Optional]

Returns A Twitter Json structure.

ShowSubscription(owner_screen_name=None, owner_id=None, list_id=None, slug=None,
user_id=None, screen_name=None, include_entities=False, skip_status=False,
return_json=False)

Check if the specified user is a subscriber of the specified list.

Returns the user if they are subscriber.

Parameters

• owner_screen_name (str, optional) – The screen_name of the user who owns
the list being requested by a slug.

• owner_id (int, optional) – The user ID of the user who owns the list being re-
quested by a slug.

• list_id (int, optional) – The numerical ID of the list.

• slug (str, optional) – You can identify a list by its slug instead of its numerical
ID. If you decide to do so, note that you’ll also have to specify the list owner using the
owner_id or owner_screen_name parameters.

• user_id (int, optional) – The user_id or a list of user_id’s to add to the list. If
not given, then screen_name is required.

• screen_name (str, optional) – The screen_name or a list of screen_name’s to
add to the list. If not given, then user_id is required.

• include_entities (bool, optional) – If False, the timeline will not contain
additional metadata. Defaults to True.

• skip_status (bool, optional) – If True the statuses will not be returned in the
user items.

58 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A twitter.User instance representing the user requested.

Return type twitter.user.User

UpdateBanner(image, include_entities=False, skip_status=False)
Updates the authenticated users profile banner.

Parameters

• image – Location of image in file system

• include_entities – If True, each tweet will include a node called “entities.” This
node offers a variety of metadata about the tweet in a discrete structure, including:
user_mentions, urls, and hashtags. [Optional]

Returns A twitter.List instance representing the list subscribed to

UpdateFriendship(user_id=None, screen_name=None, follow=True, retweets=True, **kwargs)
Updates a friendship with the user specified by the user_id or screen_name.

Parameters

• user_id (int, optional) – A user_id to update

• screen_name (str, optional) – A screen_name to update

• follow (bool, optional) – Set to False to disable notifications for the target user

• retweets (bool, optional) – Enable or disable retweets from the target user.

• device – Set to False to disable notifications for the target user

Returns A twitter.User instance representing the befriended user.

UpdateImage(image, include_entities=False, skip_status=False)
Update a User’s profile image. Change may not be immediately reflected due to image processing on
Twitter’s side.

Parameters

• image (str) – Location of local image file to use.

• include_entities (bool, optional) – Include the entities node in the return
data.

• skip_status (bool, optional) – Include the User’s last Status in the User entity
returned.

Returns Updated User object.

Return type (twitter.models.User)

UpdateProfile(name=None, profileURL=None, location=None, description=None, pro-
file_link_color=None, include_entities=False, skip_status=False)

Update’s the authenticated user’s profile data.

Parameters

• name (str, optional) – Full name associated with the profile.

• profileURL (str, optional) – URL associated with the profile. Will be prepended
with “http://” if not present.

• location (str, optional) – The city or country describing where the user of the
account is located. The contents are not normalized or geocoded in any way.

10.1. API 59

http://

python-twitter Documentation, Release 3.4.2

• description (str, optional) – A description of the user owning the account.

• profile_link_color (str, optional) – hex value of profile color theme. for-
mated without ‘#’ or ‘0x’. Ex: FF00FF

• include_entities (bool, optional) – The entities node will be omitted when
set to False.

• skip_status (bool, optional) – When set to either True, t or 1 then statuses will
not be included in the returned user objects.

Returns A twitter.User instance representing the modified user.

UploadMediaChunked(media, additional_owners=None, media_category=None)
Upload a media file to Twitter in multiple requests.

Parameters

• media – File-like object to upload.

• additional_owners – additional Twitter users that are allowed to use The uploaded
media. Should be a list of integers. Maximum number of additional owners is capped at
100 by Twitter.

• media_category – Category with which to identify media upload. Only use with Ads
API & video files.

Returns ID of the uploaded media returned by the Twitter API. Raises if unsuccesful.

Return type media_id

UploadMediaSimple(media, additional_owners=None, media_category=None)
Upload a media file to Twitter in one request. Used for small file uploads that do not require chunked
uploads.

Parameters

• media – File-like object to upload.

• additional_owners – additional Twitter users that are allowed to use The uploaded
media. Should be a list of integers. Maximum number of additional owners is capped at
100 by Twitter.

• media_category – Category with which to identify media upload. Only use with Ads
API & video files.

Returns ID of the uploaded media returned by the Twitter API or 0.

Return type media_id

UsersLookup(user_id=None, screen_name=None, users=None, include_entities=True, re-
turn_json=False)

Fetch extended information for the specified users.

Users may be specified either as lists of either user_ids, screen_names, or twitter.User objects. The list of
users that are queried is the union of all specified parameters.

No more than 100 users may be given per request.

Parameters

• user_id (int, list, optional) – A list of user_ids to retrieve extended infor-
mation.

• screen_name (str, list, optional) – A list of screen_names to retrieve ex-
tended information.

60 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

• users (list, optional) – A list of twitter.User objects to retrieve extended infor-
mation.

• include_entities (bool, optional) – The entities node that may appear within
embedded statuses will be excluded when set to False.

• return_json (bool, optional) – If True JSON data will be returned, instead of
twitter.User

Returns A list of twitter.User objects for the requested users

VerifyCredentials(include_entities=None, skip_status=None, include_email=None)
Returns a twitter.User instance if the authenticating user is valid.

Parameters

• include_entities – Specifies whether to return additional @replies in the stream.

• skip_status – When set to either true, t or 1 statuses will not be included in the
returned user object.

• include_email – Use of this parameter requires whitelisting. When set to true email
will be returned in the user objects as a string. If the user does not have an email address
on their account, or if the email address is un-verified, null will be returned. If your app is
not whitelisted, then the ‘email’ key will not be present in the json response.

Returns A twitter.User instance representing that user if the credentials are valid, None other-
wise.

exception twitter.error.PythonTwitterDeprecationWarning
Bases: exceptions.DeprecationWarning

Base class for python-twitter deprecation warnings

exception twitter.error.PythonTwitterDeprecationWarning330
Bases: twitter.error.PythonTwitterDeprecationWarning

Warning for features to be removed in version 3.3.0

exception twitter.error.PythonTwitterDeprecationWarning340
Bases: twitter.error.PythonTwitterDeprecationWarning

Warning for features to be removed in version 3.4.0

exception twitter.error.TwitterError
Bases: exceptions.Exception

Base class for Twitter errors

message
Returns the first argument used to construct this error.

10.2 Models

class twitter.models.Category(**kwargs)
Bases: twitter.models.TwitterModel

A class representing the suggested user category structure.

class twitter.models.DirectMessage(**kwargs)
Bases: twitter.models.TwitterModel

A class representing a Direct Message.

10.2. Models 61

python-twitter Documentation, Release 3.4.2

class twitter.models.Hashtag(**kwargs)
Bases: twitter.models.TwitterModel

A class representing a twitter hashtag.

class twitter.models.List(**kwargs)
Bases: twitter.models.TwitterModel

A class representing the List structure used by the twitter API.

class twitter.models.Media(**kwargs)
Bases: twitter.models.TwitterModel

A class representing the Media component of a tweet.

class twitter.models.Status(**kwargs)
Bases: twitter.models.TwitterModel

A class representing the Status structure used by the twitter API.

classmethod NewFromJsonDict(data, **kwargs)
Create a new instance based on a JSON dict.

Parameters data – A JSON dict, as converted from the JSON in the twitter API

Returns A twitter.Status instance

created_at_in_seconds
Get the time this status message was posted, in seconds since the epoch (1 Jan 1970).

Returns The time this status message was posted, in seconds since the epoch.

Return type int

class twitter.models.Trend(**kwargs)
Bases: twitter.models.TwitterModel

A class representing a trending topic.

volume

class twitter.models.TwitterModel(**kwargs)
Bases: object

Base class from which all twitter models will inherit.

AsDict()
Create a dictionary representation of the object. Please see inline comments on construction when dictio-
naries contain TwitterModels.

AsJsonString(ensure_ascii=True)
Returns the TwitterModel as a JSON string based on key/value pairs returned from the AsDict() method.

classmethod NewFromJsonDict(data, **kwargs)
Create a new instance based on a JSON dict. Any kwargs should be supplied by the inherited, calling class.

Parameters data – A JSON dict, as converted from the JSON in the twitter API.

class twitter.models.Url(**kwargs)
Bases: twitter.models.TwitterModel

A class representing an URL contained in a tweet.

class twitter.models.User(**kwargs)
Bases: twitter.models.TwitterModel

A class representing the User structure.

62 Chapter 10. Modules Documentation

python-twitter Documentation, Release 3.4.2

classmethod NewFromJsonDict(data, **kwargs)

class twitter.models.UserStatus(**kwargs)
Bases: twitter.models.TwitterModel

A class representing the UserStatus structure. This is an abbreviated form of the twitter.User object.

connections

class twitter.ratelimit.EndpointRateLimit(limit, remaining, reset)
Bases: tuple

limit
Alias for field number 0

remaining
Alias for field number 1

reset
Alias for field number 2

class twitter.ratelimit.RateLimit(**kwargs)
Bases: object

Object to hold the rate limit status of various endpoints for the twitter.Api object.

This object is generally attached to the API as Api.rate_limit, but is not created until the user makes a method
call that uses _RequestUrl() or calls Api.InitializeRateLimit(), after which it get created and populated with rate
limit data from Twitter.

Calling Api.InitializeRateLimit() populates the object with all of the rate limits for the endpoints defined by
Twitter; more info is available here:

https://dev.twitter.com/rest/public/rate-limits

https://dev.twitter.com/rest/public/rate-limiting

https://dev.twitter.com/rest/reference/get/application/rate_limit_status

Once a resource (i.e., an endpoint) has been requested, Twitter’s response will contain the current rate limit
status as part of the headers, i.e.:

x-rate-limit-limit
x-rate-limit-remaining
x-rate-limit-reset

limit is the generic limit for that endpoint, remaining is how many more times you can make a call to
that endpoint, and reset is the time (in seconds since the epoch) until remaining resets to its default for that
endpoint.

Generally speaking, each endpoint has a 15-minute reset time and endpoints can either make 180 or 15 requests
per window. According to Twitter, any endpoint not defined in the rate limit chart or the response from a
GET request to application/rate_limit_status.json should be assumed to be 15 requests per 15
minutes.

get_limit(url)
Gets a EndpointRateLimit object for the given url.

Parameters url (str, optional) – URL of the endpoint for which to return the rate limit
status.

Returns EndpointRateLimit object containing rate limit information.

Return type namedtuple

10.2. Models 63

https://dev.twitter.com/rest/public/rate-limits
https://dev.twitter.com/rest/public/rate-limiting
https://dev.twitter.com/rest/reference/get/application/rate_limit_status

python-twitter Documentation, Release 3.4.2

set_limit(url, limit, remaining, reset)
If a resource family is unknown, add it to the object’s dictionary. This is to deal with new end-
points being added to the API, but not necessarily to the information returned by /account/
rate_limit_status.json endpoint.

For example, if Twitter were to add an endpoint /puppies/lookup.json, the RateLimit object would
create a resource family puppies and add /puppies/lookup as the endpoint, along with whatever
limit, remaining hits available, and reset time would be applicable to that resource+endpoint pair.

Parameters

• url (str) – URL of the endpoint being fetched.

• limit (int) – Max number of times a user or app can hit the endpoint before being rate
limited.

• remaining (int) – Number of times a user or app can access the endpoint before being
rate limited.

• reset (int) – Epoch time at which the rate limit window will reset.

set_unknown_limit(url, limit, remaining, reset)

static url_to_resource(url)
Take a fully qualified URL and attempts to return the rate limit resource family corresponding to it. For
example:

>>> RateLimit.url_to_resource('https://api.twitter.com/1.1/statuses/lookup.
→˓json?id=317')
>>> '/statuses/lookup'

Parameters url (str) – URL to convert to a resource family.

Returns Resource family corresponding to the URL.

Return type string

class twitter.ratelimit.ResourceEndpoint(regex, resource)
Bases: tuple

regex
Alias for field number 0

resource
Alias for field number 1

10.3 Utilities

twitter.twitter_utils.calc_expected_status_length(status, short_url_length=23)
Calculates the length of a tweet, taking into account Twitter’s replacement of URLs with https://t.co links.

Parameters

• status – text of the status message to be posted.

• short_url_length – the current published https://t.co links

Returns Expected length of the status message as an integer.

64 Chapter 10. Modules Documentation

https://t.co
https://t.co

python-twitter Documentation, Release 3.4.2

twitter.twitter_utils.enf_type(field, _type, val)
Checks to see if a given val for a field (i.e., the name of the field) is of the proper _type. If it is not, raises a
TwitterError with a brief explanation.

Parameters

• field – Name of the field you are checking.

• _type – Type that the value should be returned as.

• val – Value to convert to _type.

Returns val converted to type _type.

twitter.twitter_utils.http_to_file(http)

twitter.twitter_utils.is_url(text)
Checks to see if a bit of text is a URL.

Parameters text – text to check.

Returns Boolean of whether the text should be treated as a URL or not.

twitter.twitter_utils.parse_arg_list(args, attr)

twitter.twitter_utils.parse_media_file(passed_media, async_upload=False)
Parses a media file and attempts to return a file-like object and information about the media file.

Parameters

• passed_media – media file which to parse.

• async_upload – flag, for validation media file attributes.

Returns file-like object, the filename of the media file, the file size, and the type of media.

10.3. Utilities 65

python-twitter Documentation, Release 3.4.2

66 Chapter 10. Modules Documentation

CHAPTER 11

Introduction

This library provides a pure Python interface for the Twitter API. It works with Python 2.7+ and Python 3.

Twitter provides a service that allows people to connect via the web, IM, and SMS. Twitter exposes a web services
API and this library is intended to make it even easier for Python programmers to use.

67

https://dev.twitter.com/
http://twitter.com
http://dev.twitter.com/doc
http://dev.twitter.com/doc

python-twitter Documentation, Release 3.4.2

68 Chapter 11. Introduction

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

69

python-twitter Documentation, Release 3.4.2

70 Chapter 12. Indices and tables

Python Module Index

t
twitter.api, 31
twitter.error, 61
twitter.models, 61
twitter.ratelimit, 63
twitter.twitter_utils, 64

71

python-twitter Documentation, Release 3.4.2

72 Python Module Index

Index

A
Api (class in twitter.api), 31
AsDict() (twitter.models.TwitterModel method), 62
AsJsonString() (twitter.models.TwitterModel method), 62

C
calc_expected_status_length() (in module twit-

ter.twitter_utils), 64
Category (class in twitter.models), 61
CheckRateLimit() (twitter.api.Api method), 32
ClearCredentials() (twitter.api.Api method), 32
connections (twitter.models.UserStatus attribute), 63
CreateBlock() (twitter.api.Api method), 32
created_at_in_seconds (twitter.models.Status attribute),

62
CreateFavorite() (twitter.api.Api method), 33
CreateFriendship() (twitter.api.Api method), 33
CreateList() (twitter.api.Api method), 33
CreateListsMember() (twitter.api.Api method), 33
CreateMute() (twitter.api.Api method), 34
CreateSubscription() (twitter.api.Api method), 34

D
DEFAULT_CACHE_TIMEOUT (twitter.api.Api at-

tribute), 34
DestroyBlock() (twitter.api.Api method), 34
DestroyDirectMessage() (twitter.api.Api method), 35
DestroyFavorite() (twitter.api.Api method), 35
DestroyFriendship() (twitter.api.Api method), 35
DestroyList() (twitter.api.Api method), 35
DestroyListsMember() (twitter.api.Api method), 35
DestroyMute() (twitter.api.Api method), 36
DestroyStatus() (twitter.api.Api method), 36
DestroySubscription() (twitter.api.Api method), 36
DirectMessage (class in twitter.models), 61

E
EndpointRateLimit (class in twitter.ratelimit), 63
enf_type() (in module twitter.twitter_utils), 64

G
get_limit() (twitter.ratelimit.RateLimit method), 63
GetAppOnlyAuthToken() (twitter.api.Api static method),

37
GetBlocks() (twitter.api.Api method), 37
GetBlocksIDs() (twitter.api.Api method), 37
GetBlocksIDsPaged() (twitter.api.Api method), 37
GetBlocksPaged() (twitter.api.Api method), 37
GetDirectMessages() (twitter.api.Api method), 37
GetFavorites() (twitter.api.Api method), 38
GetFollowerIDs() (twitter.api.Api method), 39
GetFollowerIDsPaged() (twitter.api.Api method), 39
GetFollowers() (twitter.api.Api method), 39
GetFollowersPaged() (twitter.api.Api method), 40
GetFriendIDs() (twitter.api.Api method), 40
GetFriendIDsPaged() (twitter.api.Api method), 41
GetFriends() (twitter.api.Api method), 41
GetFriendsPaged() (twitter.api.Api method), 41
GetHelpConfiguration() (twitter.api.Api method), 42
GetHomeTimeline() (twitter.api.Api method), 42
GetListMembers() (twitter.api.Api method), 43
GetListMembersPaged() (twitter.api.Api method), 43
GetLists() (twitter.api.Api method), 44
GetListsList() (twitter.api.Api method), 44
GetListsPaged() (twitter.api.Api method), 45
GetListTimeline() (twitter.api.Api method), 43
GetMemberships() (twitter.api.Api method), 45
GetMentions() (twitter.api.Api method), 46
GetMutes() (twitter.api.Api method), 46
GetMutesIDs() (twitter.api.Api method), 46
GetMutesIDsPaged() (twitter.api.Api method), 46
GetMutesPaged() (twitter.api.Api method), 47
GetReplies() (twitter.api.Api method), 47
GetRetweeters() (twitter.api.Api method), 47
GetRetweets() (twitter.api.Api method), 47
GetRetweetsOfMe() (twitter.api.Api method), 48
GetSearch() (twitter.api.Api method), 48
GetSentDirectMessages() (twitter.api.Api method), 49
GetShortUrlLength() (twitter.api.Api method), 49

73

python-twitter Documentation, Release 3.4.2

GetStatus() (twitter.api.Api method), 50
GetStatuses() (twitter.api.Api method), 50
GetStatusOembed() (twitter.api.Api method), 50
GetStreamFilter() (twitter.api.Api method), 51
GetStreamSample() (twitter.api.Api method), 51
GetSubscriptions() (twitter.api.Api method), 51
GetTrendsCurrent() (twitter.api.Api method), 52
GetTrendsWoeid() (twitter.api.Api method), 52
GetUser() (twitter.api.Api method), 52
GetUserRetweets() (twitter.api.Api method), 52
GetUsersSearch() (twitter.api.Api method), 54
GetUserStream() (twitter.api.Api method), 53
GetUserSuggestion() (twitter.api.Api method), 53
GetUserSuggestionCategories() (twitter.api.Api method),

53
GetUserTimeline() (twitter.api.Api method), 53

H
Hashtag (class in twitter.models), 61
http_to_file() (in module twitter.twitter_utils), 65

I
IncomingFriendship() (twitter.api.Api method), 54
InitializeRateLimit() (twitter.api.Api method), 54
is_url() (in module twitter.twitter_utils), 65

L
limit (twitter.ratelimit.EndpointRateLimit attribute), 63
List (class in twitter.models), 62
LookupFriendship() (twitter.api.Api method), 54

M
Media (class in twitter.models), 62
message (twitter.error.TwitterError attribute), 61

N
NewFromJsonDict() (twitter.models.Status class

method), 62
NewFromJsonDict() (twitter.models.TwitterModel class

method), 62
NewFromJsonDict() (twitter.models.User class method),

62

O
OutgoingFriendship() (twitter.api.Api method), 55

P
parse_arg_list() (in module twitter.twitter_utils), 65
parse_media_file() (in module twitter.twitter_utils), 65
PostDirectMessage() (twitter.api.Api method), 55
PostMediaMetadata() (twitter.api.Api method), 55
PostRetweet() (twitter.api.Api method), 55
PostUpdate() (twitter.api.Api method), 55

PostUpdates() (twitter.api.Api method), 57
PythonTwitterDeprecationWarning, 61
PythonTwitterDeprecationWarning330, 61
PythonTwitterDeprecationWarning340, 61

R
RateLimit (class in twitter.ratelimit), 63
regex (twitter.ratelimit.ResourceEndpoint attribute), 64
remaining (twitter.ratelimit.EndpointRateLimit attribute),

63
reset (twitter.ratelimit.EndpointRateLimit attribute), 63
resource (twitter.ratelimit.ResourceEndpoint attribute),

64
ResourceEndpoint (class in twitter.ratelimit), 64

S
set_limit() (twitter.ratelimit.RateLimit method), 63
set_unknown_limit() (twitter.ratelimit.RateLimit

method), 64
SetCache() (twitter.api.Api method), 57
SetCacheTimeout() (twitter.api.Api method), 57
SetCredentials() (twitter.api.Api method), 57
SetSource() (twitter.api.Api method), 57
SetUrllib() (twitter.api.Api method), 57
SetUserAgent() (twitter.api.Api method), 57
SetXTwitterHeaders() (twitter.api.Api method), 58
ShowFriendship() (twitter.api.Api method), 58
ShowSubscription() (twitter.api.Api method), 58
Status (class in twitter.models), 62

T
Trend (class in twitter.models), 62
twitter.api (module), 31
twitter.error (module), 61
twitter.models (module), 61
twitter.ratelimit (module), 63
twitter.twitter_utils (module), 64
TwitterError, 61
TwitterModel (class in twitter.models), 62

U
UpdateBanner() (twitter.api.Api method), 59
UpdateFriendship() (twitter.api.Api method), 59
UpdateImage() (twitter.api.Api method), 59
UpdateProfile() (twitter.api.Api method), 59
UploadMediaChunked() (twitter.api.Api method), 60
UploadMediaSimple() (twitter.api.Api method), 60
Url (class in twitter.models), 62
url_to_resource() (twitter.ratelimit.RateLimit static

method), 64
User (class in twitter.models), 62
UsersLookup() (twitter.api.Api method), 60
UserStatus (class in twitter.models), 63

74 Index

python-twitter Documentation, Release 3.4.2

V
VerifyCredentials() (twitter.api.Api method), 61
volume (twitter.models.Trend attribute), 62

Index 75

	Installation & Testing
	Getting Started
	Contributing
	Migration from v2 to v3
	Changelog
	Rate Limiting
	Models
	Searching
	Using with Django
	Modules Documentation
	Introduction
	Indices and tables
	Python Module Index

